Graph each quadratic function: 1. f(x) = 3x2 – 6x – 2 2. f(x) = -2(x + 3)(x – 1) 3. f(x) = ½(x + 2)2 – 3 Algebra II 1 Quadratics with Algebra II 2 y ¡ Vertex form: x = a(y – k)2 + h ¡ A Algebra II parabola that opens left or right 3 ¡ Vertex ¡ ¡ ¡ form: x = a(y – 2 k) + h Vertex: (same as h, opposite of k) Axis of symmetry (AOS): y = opposite of k a: determines the direction the graph opens, and the width of the graph § a > 0 opens right § a < 0 opens left § |a| < 1 wider than x2 § |a| > 1 narrower than x2 § |a| = 1 same width as x2 Algebra II 4 x = 2(y+3)2 - 2 Opens right Shift down 3 Shift Left 2 skinnier Algebra II 5 x = -(y+1)2 + 5 Opens left Shift down 1 Shift right Same width Algebra II 6 x = ½ (y - 5)2 + 7 Opens right Shift up 5 Shift right 7 wider Algebra II 7 Graph: x = - ½(y + 3)2 + 4 Opens left Wider than y2 Vertex: (4, -3) AOS: y = 4 Table à Reflect Algebra II X Y 8 Graph: x = 2(y – 1)2 + 3 Opens right Narrower than y2 Vertex: (3,1) AOS: y = 1 Table à Reflect Algebra II X Y 9 Graph: x = -(y + 5)2 + 2 Opens left Same width as y2 Vertex: (2, -5) AOS: y = -5 Table à Reflect Algebra II x y 10 Graph: x = 2(y – 1)2 + 1 Opens right Narrower than x2 Vertex: (1,1) AOS: y = 1 Table à Reflect Algebra II x Y 11 Graph: x = -2(y + 2)2 Opens left Narrower than y2 Vertex: (0, -2) AOS: y = -2 Table à Reflect Algebra II x y 12
© Copyright 2026 Paperzz