Fractions in Greater Terms

Fractions in
Greater Terms
Name
_
Date
Rename a fraction as an equivalent fraction in greater terms by multiplying
the numerator and denominator by the same number.
3
i
35<3
9
5=5X3=15
3 x 6
3
or
18
5 = 5 x 6 = 30J
Greater-Terms Fractions
Write the letter of the equivalent fraction in greater terms.
1
5
a. 12
1. 3"
2
6
c. 10
5
d. 15
e.
8
20
35
45
6
30
8
6
d. 16
e.
d. 48
56
e.
"4
2
e.
e.
5
b. 10
c.
b. 28
30
c.
9
24
9
45
56
64
3
20
16
80
6
35
7
a. 16
1
a. 2f
5
8
b. 32
c.
2
a.
8
b. 36
c. 18
12
d. 45
1
14
64
2
a. 18
18
48
d. 54
e.
10. Z8 -
48
11. ~9 -
24
16. "2
4
21. 9
3. 8
4. "4
5. 9
6.
8
40
15
a.
2. 5
4
3
b.
6
6
c.
b. 30
d.
9
Write the missing term.
~ - -.JL
7. 4 -
2
8.
3=
..! - --12. 7 - 35
13.
17.
18. ~6 -
~ =
2T
1
3
1
9.
27
5=
2
- l
14. 9
2
19. 3"
24
10
-
3
15. 8
36
= l
20.
-
1
6=
18
1
= l
4
-
45
Write the equivalent fractions.
3
22. "4
=
2
=
27. 7"
29.
~ =~
16
23.
4
= 213=
1
5 = 15=
5
-
24.
=
14
42
35
-
45 =
2
9
25. 10
5 =-=rs
=JJL
11
4
28. 9
=
3 _
~
30. 11- 22
=
=
=
27
.ie,
-
26.
54
-
=-.1£
33
=
~-~
12 ~=
55
36
=~
31. Suzy's class used ~ of the cafeteria trays
for their science display. There are 72 trays
in all. Write a fraction in greater terms
that shows how many trays were used.
Copyright © William H. Sadlier, Inc. All rights reserved.
Use with Lesson 4-6, text pages 144-145.
45