ABSOLUTE VALUE THANOMSAK LAOKUL Mathematics Teacher Mahidol Wittayanusorn School MATH 30102 T.Laokul – p. 1/ Absolute Value If a is a real number, then the absolute value of a is a |a| = −a if a ≥ 0 if a < 0. T.Laokul – p. 2/ Absolute Value If a is a real number, then the absolute value of a is a |a| = −a if a ≥ 0 if a < 0. Distance Between Two Points on the Real Line Let a and b be real numbers. The distance between a and b is d(a, b) = |b − a| = |a − b|. T.Laokul – p. 2/ Properties of Absolute Values For any real number a and b T.Laokul – p. 3/ Properties of Absolute Values For any real number a and b 1. |a| ≥ 0 T.Laokul – p. 3/ Properties of Absolute Values For any real number a and b 1. |a| ≥ 0 2. | − a| = |a| T.Laokul – p. 3/ Properties of Absolute Values For any real number a and b 1. |a| ≥ 0 2. | − a| = |a| 3. |ab| = |a||b| T.Laokul – p. 3/ Properties of Absolute Values For any real number a and b 1. |a| ≥ 0 2. | − a| = |a| 3. |ab| = |a||b| a |a| 4. = , b 6= 0 b |b| T.Laokul – p. 3/ Properties of Absolute Values For any real number a and b 1. |a| ≥ 0 2. | − a| = |a| 3. |ab| = |a||b| a |a| 4. = , b 6= 0 b |b| 5. −|x| ≤ x ≤ |x| proof T.Laokul – p. 3/ Properties of Absolute Values For any real number a and b T.Laokul – p. 4/ Properties of Absolute Values For any real number a and b 6. Let a > 0 and x ∈ R, if |x| ≤ a then −a ≤ x ≤ a T.Laokul – p. 4/ Properties of Absolute Values For any real number a and b 6. Let a > 0 and x ∈ R, if |x| ≤ a then −a ≤ x ≤ a 7. Let a > 0 and x ∈ R, if |x| ≥ a then x ≥ a or x ≤ −a T.Laokul – p. 4/ Properties of Absolute Values For any real number a and b 6. Let a > 0 and x ∈ R, if |x| ≤ a then −a ≤ x ≤ a 7. Let a > 0 and x ∈ R, if |x| ≥ a then x ≥ a or x ≤ −a 8. |a + b| ≤ |a| + |b| proof T.Laokul – p. 4/ Properties of Absolute Values For any real number a and b 6. Let a > 0 and x ∈ R, if |x| ≤ a then −a ≤ x ≤ a 7. Let a > 0 and x ∈ R, if |x| ≥ a then x ≥ a or x ≤ −a 8. |a + b| ≤ |a| + |b| proof 9. |a − b| ≥ |a| − |b| and |a − b| ≥ |b| − |a| T.Laokul – p. 4/ Properties of Absolute Values For any real number a and b 6. Let a > 0 and x ∈ R, if |x| ≤ a then −a ≤ x ≤ a 7. Let a > 0 and x ∈ R, if |x| ≥ a then x ≥ a or x ≤ −a 8. |a + b| ≤ |a| + |b| proof 9. |a − b| ≥ |a| − |b| and |a − b| ≥ |b| − |a| 10. (|a|)2 = a2 T.Laokul – p. 4/
© Copyright 2026 Paperzz