File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
ANDHRA PRADESH - TELANGANA
2014-2015 PROGRAM M E
5TH - CHAPTER - SOLUTIONS
5. TRIGONOMETRY
1.
..... cos
46 cos
G.E cos 2 10 cos 2 890 cos 2 20 cos 2 880
2
440 cos 2
2 0
2 0
0
2
2
0
450 ) 0 2
2
0
cos 1 sin 1 cos 2 sin 2
2
2
1 89
2 2
44
2.
1
....... cos 44 sin 44
2
2
G.E sec A tan A 1 sec A tan A 1
sec2 A tan2 A 2tan A 1
2
2
sec A tan A 2tan A 1 2tan A
3.
G.E
cot cos ec cos ec 2 cot 2
cot cos ec 1
2014 - 2015
cos ec cot 1 cos ec cot
cot coe sec 1
1 cos
cos ec cot
sin
4.
sin x cos x
tan x sec2 x sec 2 x
cos 3 x
tan x 1 tan2 x 1 tan2 x
3
2
tan x tan x tan x 1
a 1,b 1,c 1,d 1
abcd 4
5.
4
x 2 y 2 a2 sec tan .b 2 sec tan
www.eabhyasacademy.com
a2b2 sec2 tan2
6.
G.E
4
4
a2b 2
1 tan 20 tan 280
1
0
0
tan28 tan 2
tan300
cot 300 3
k 3 3 k 1
CHALLENGER
1
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
7.
tan A B
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
tan A tanB
1 tan A tanB
1 1
3 2
2
3
6 1
1 1 6 1
1
6
2 3
8.
sin sin ,cos cos
sin sin cos cos 0
2cos
sin
2
2
2sin
sin
0
2
2
sin
0
2
2
9.
10.
2
3 3 1
sin2 600 cos 2 30 0 sin2 450
2 2 2
2
3 3 1 334 2 1
4 4 2
4
4 2
1
1
cos ec 2 1
1
sec sec
sec 1 sec
cos ec 2
sec sec
cos ec 2 sec2 1
sec2
sec2 tan2 1
tan cot2014
1
-
2015
cot 2 tan2 1
11.
3 tan A 4 tan A
4
3
2sin A 7 cos A
3cos A 4
5
4
A
3
www.eabhyasacademy.com
4
3
8 21
2 7
8 21 13
5
5
5 5
9 20
29
29
3
3 4
5
5
12.
sin A
1
2
A Q 2
sin A sin1500 A 1500 A
CHALLENGER
5
6
2
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
c
13.
3 3
180 3 36 1080
5 5
14.
logsec 1 sin2 logcos1 cos 2
15.
sin
180 c
2
logcos cos 2
1
4
5
Q1
4
3
24
sin 2 2sin cos 2 5
5 25
16.
sin 4 cos 4 sin2 cos 2 sin2 cos 2 1 cos 2 sin2
cos 2 1 2 sin2 2 sin2 1
17.
cot A B 1 and cos A B
1
2
A B 450 ----- (1)
A B 600 ------- (2)
(2) - (1)
18.
A
A
B
B
60
45
2B
15
B
7
2sin A 12sin A 1 0
2
4sin2 A 1 0 sin A
19.
1
2
sin 4 cos 4
1
1
- 2015
A
sin2014
A 300
4
2
1
1
2
2sin cos sin4 cos4 4 sin2 cos2
2
2
2
sin4 cos 4 2sin2 cos 2 sin 2 cos 2
2
1 = 1
1 sin2
1 cos 2
20.
sin cos
21.
sin2 cos 2 2sin cos
sin2
sin
2
sin cos
1 cot
sin
Let A,B are complementary angles A B 90 B 90 A
www.eabhyasacademy.com
tan B tan 90 A cot A
22.
sin2 A sin2B
1
1
2
2
cos ec A tan B 1
4 sin4 30 0 cos 4 30 0 3 cos 2 450 sin2 900
CHALLENGER
3
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1 4 3 4
1 2
2
4
3
1 4 1 9 3 1 1
16 16
2
2 2
2
10
3 5 9
4
4 3 2
16
2
2
2 2
23.
sec
tan
sec
tan
2sec
4
3
4
3
3
4
3
4
25
7
24
sec
16 9
12
25
7
and tan
24
24
25 7 175
sec tan
24 24 576
24.
sin cos n sin2 cos n2 2sin cos n2 sin cos
2014 - 2015
sin6 cos6 sin2
3
3
cos sin
2
2
cos 2
2
3
n2 1
2
3 sin 2 cos 2 sin 2 cos 2
2
n2 1
n2 1 4 3 n2 1
1
3
1
3
1 3sin cos
2
4
4
2
25.
2
2
sin 250 cos 250 sin350 sin 250 cos 350 cos 250
cos 350 sin350
cos 350 sin350
www.eabhyasacademy.com
cos 350 25
1
2sin35cos 35
2
26.
tan 300 tan3 300
tan3 300 tan900
1 3 tan2 300
27.
cot 4 x cot 2 x 1
1
2
2cos 600
2 cos ec 700
sin700 sin70
cot 4 x 1 cot 2 x
cot 4 x cos ec 2 x
cos 4 x
1
4
sin x sin2 x
cos 4 x sin2 x
CHALLENGER
4
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
4
2
2
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
2
cos x cos x sin x cos x 1
28.
cos A B
cos A B
8
3
cos A cosB sin A sinB 8
cos A cosB sin A sinB 3
1 tan A tanB 8
1 tan A tanB 3
3 3tan A tanB 8 8tan A tanB
11tan A tanB 5
tan A tanB
5
11
29.
1
1
cot 2k
2
2k
30.
Q2 sin 0 , cos 0
1 sin
1 sin 1 sin
1 sin
1 sin cos
cos ec cot
1
2k
1 sin
cos
sec tan sec tan 2sec
1.
2014 - 2015
sec 6 tan 6 sec3 tan 2 sec4 sec 4 tan 2 tan 4
1 sec 4 sec 2 sec 2 1 sec 2 1
2
3sec4 3sec2 1 a b c 1
2.
1
42 3
1 cos
1 cos
www.eabhyasacademy.com
3.
1
42 3
3
3
1
cos
, ,11
4
6
6
4 2 3
2
2
cot cos ec 1
cot cos ec 1
=
cot cos ec cos ec 2 cot 2
cot cos ec 1
cos ec cot cos ec cot 1
cot cos ec 1
cos ec cot
CHALLENGER
5
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
1 tan A
A 1 tan A 1
4
1 tan A
4.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1 tan A 1 tan
1 tan A 1 tan A
1 tan A
2
1 tan A
tan tan
p
p
1 tan tan 1 q q 1
5.
tan
6.
3
tan tan
4
4
7.
1 tan
1 1 tan
1 tan
1 tan
1 tan
1 tan
1 tan 1 tan 1 tan
1
1 tan
1 tan 1 tan
a
42 3
1 r
1
42 3
1 cos x
Let x 30 0
1
3
1
2
4 2 3
2014 - 2015
2
2 3
.
4 2 3
2 3 2 3
4 2 3 4 2 3
x 300
8.
cos 6
1 3sin 2
cos 2
49
49
49
49
sin 6
1 3sin 2
www.eabhyasacademy.com
9.
cos 2
1 3sin 2
cos 2
0
49
49
49
49
2
2
81sin x 81cos x 30
2
81sin x 811sin
81sin
a
2
x
2
x
30
a
81
30
a
CHALLENGER
6
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
2
a 30a 81 0
a 3 a 27 0
a3
a 27
81sin
2
x
27
81sin
2
x
33
2
34sin x 33
4sin 2 x 3
sin 2 x
3
4
sin x
3
2
x
10.
3
If A B 450 then 1 tan A 1 tan B 2
2
1
2
11.
A B
C
90
2 2
2
C
A B
tan tan 90
2
2 2
2014 - 2015
A
B
tan
2
2 cot C 1
A
B
2 tan C
1 tan tan
2
2
2
tan
5 20
6 37 1
5 20
C
1
tan
6 37
2
www.eabhyasacademy.com
tan
12.
C 2
2 5
1
3
0
sin10 cos100
cos100 3 sin100
sin100 cos100
CHALLENGER
7
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1
3
2 cos100
sin100
2
2
0
0
sin10 cos10
2 2 sin 300 cos100 cos30 0 sin100
2 sin100 cos100
4 sin 300 100
sin 200
4
tan 1800 200 tan 900 200
13.
1 tan 1800 200 tan 98 28
tan 200 cot 200
1 tan 200 cot 200
1
p
p2 1
p
2
2p
14.
tan A B
tan A tan B
1 tan A tan B
1 1
2 3 1
1 1
1 .
2 3
15.
2014 - 2015
1 cos sin
1 cos sin
2sin cos
2
2
2
2 cos 2 2 sin cos
2
2
2
2 sin 2
www.eabhyasacademy.com
2 sin sin cos
2
2
tan
2
2 cos cos sin
2
2
2
16.
tan A 1 tan A
1 tan A 1 tan A
2
1 tan A 1 tan A
2
1 tan 2 A
CHALLENGER
8
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
2 1 tan 2 A
1 tan 2 A
17.
2 sec 2 A
Let x x y 00
1 0
1,
1 0
18.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1 0
1
1 0
cos 2 760 cos 2 160 cos 760 cos160
cos 2 760 1 sin 2 160 cos 760 cos160
1 cos 2 76 sin 2 160 cos 760 cos160
1 cos 920 cos 60 0 cos 76 0 cos16 0
19.
20.
1
cos 920 1
cos 920 cos 600
2
2
1
cos 920 cos 920 1 1
2
2
2 2
1
1 3
4 4
cos
2
A sin2 B cos A B cos A B
1
cos A cosB 2 cos A B cos A B
cos 200 cos 40 0 cos 600 cos 80 0
=
1
cos 600 200 cos 200 cos 600 200
2
=
11
1
cos 3 200 cos600
2 4
8
=
1 1 1
2 8 16
2014 - 2015
sin 2 A sin 2 B sin 2C
2cos A B sin A B 2sin C cos C
2cos c sin A B 2sin A cos C
2 cos c sin sin A B sin C
2 cos c sin A B sin A B
www.eabhyasacademy.com
2cos c 2cos A sin B
4cos A sin B cos C
21.
Let
00
2
1 1
cos 45 cos 15 cos 15
2
2
2
0
CHALLENGER
2
0
2
0
9
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
22.
1
sin200 sin 400 sin600 sin800
3
=
1 1
sin 200 sin600 2sin 400 sin800
3 2
=
1
sin200 sin600 cos 400 cos1200
6
=
1 3
1
sin200 1 2sin2 200
6 2
2
=
3
3
sin 200 2sin2 20 0
12
2
=
3
3 sin 200 4 sin3 200
24
=
3
3
3
sin600
24
24 2
=
23.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
3
1
24 2 16
sin x 2x 6x sin 9x
Period
2
9
x
2
6
3
3
24.
sin
25.
sin 120 x 120 x sin 120 x 120 0 x
0
2014 - 2015
0
0
www.eabhyasacademy.com
= sin 240.sin 2x
=
3
sin 2 x
2
=
3
sin 2 x
2
max
3
3
1
2
2
min
3
3
1
2
2
3
p p 3
,
,
2 2
2
2
p 3
CHALLENGER
10
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
26.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
cos 2 x 1 sin x 2
cos x
1 sin x cos x
cos2 x 1 sin 2 x 2sin x
1 sin x
2 2 sin x
1 sin x
2 1 sin x
2
1 sin x
27.
sin 4 x cos 4 x 1 2 sin 2 x cos 2 x
1
1 4 sin 2 x cos 2 x
2
1
1 sin 2 2 x
2
1
1
0
2
=1
1
1
1
1
2
2
1
,
2
=
28.
2
1
2014 - 2015
2
cos 60 x cos 60 x
sin 60 x 60 x sin 60 x 60 x
sin1200 sin 2x
www.eabhyasacademy.com
sin1200 sin 2x
3
sin 2 x
2
3
3
1
2
2
3
3
1
2
2
3
m m 3
2 , 2 2 , 2
m 3
CHALLENGER
11
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
29.
sin 480 sin120
1
2sin 48. sin12
2
2 sin A sinB cos A B cos A B
1
1 5 1 1
cos 36 cos60
2
2 4
2
=
30.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
cos 480 cos120
5 1
8
1
2cos 480.cos120
2
2cos A cosB cos A B cos A B
1
1 1
5 1
0
0
= 2 cos60 cos36 2 2 4
=
5 3
8
BRAIN TWISTERS
:
D
G
C
90 100 / 2
1.
Using the formula
2.
tan2 A cos 2 B tan2 450 cos2 300 1
sin2 A cos 2 A sin2 450 cos 2 450
3 7
4 4
1 1
1
2 2
2014 - 2015
3.
2
sec 1 tan
sec
4.
1
cos
Given tan cot 2
tan cot
2
22
tan2 cot 2 2tan cot 4
tan2 cot 2 4 2
tan2 cot 2 2
www.eabhyasacademy.com
:
5.
Assertion : 10 0.017450
Reason :
D
G
C
90 100 / 2
Both A and R are true R is the correct explanation of A.
CHALLENGER
12
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
6.
Assertion : SinA Cos A
Reason : Sin A
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
17
13
12
5
12 5 17
; Cos A
Sin A Cos A
13
13
13 13 13
Both A and R are true R is the correct explanation of A.
7.
Assertion : sec 2 450 tan2 450
=
2
2
12 1
Reason : 3 tan2 300 4 cos 2 450
2
2
1
1
= 3
4
1 2 3
3
2
8.
From Statement we have sec tan p also sec 2 tan2 1
sec tan sec tan 1 sec tan
solving, we get sec
1
1
sec tan p
1 p2
2p
cos
2p
1 p2
1 p2
sin
using sin 1 cos 2
1 p2
9.
Assertion :
Given x cos , y sin
x 2 y 2 cos 2 sin2 1
Reason :
x cos sin
2
2014 - 2015
2
x cos sin 1 2cos sin
y cos sin
2
y 2 cos sin 1 2cos sin
x 2 y 2 1 2cos sin 1 2cos sin
x2 y2 2
Assertion is true but Reason is false
:
www.eabhyasacademy.com
10.
a) 90 0
-
c
2
b) 180 0
-
2 Right angles
c) 1 Right angle
-
c
2
-
400 g
, 120 0
3
d)
2 c
3
CHALLENGER
13
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
11.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
a) sin A cos A sin A cos A sin A cos 2 A
4
4
2
2
2
= sin2 A cos 2 A
= 1 2cos 2 A
b) 1
1 sin A 1 sin2 A
cos 2 A
1 sin A cos 2 A
1 sin A
1 sin A
1 sin A
=
1 sin A 1 sin A 1 sin A
1 sin A
1 sin A 1 1 sin A
1 sin A
= sin A
c) Given Cos A + Sin A =
cos A sin A
2
2 cos A
sin A
2
4
2
2
2
2
d) tan A tan A tan A 1 tan A sec A 1 1 sec A 1
= sec2 A 1 sec2 A 1
2
= sec 2 A 1 sec 4 A 2 sec 2 A 1
= sec 4 A sec 2 A
12.
cos 3000 cos 3600 600 cos600
1
2
tan 2250 tan 180 0 450 tan 450 1
sin 4200 sin 3600 600 sin600
32014
2
- 2015
cos 270 0 cos 360 0 90 0 cos 00 0
13.
0
a) cos 60 cos 60 2 cos60 cos 2
0
b) cos15
1
cos cos
2
3 1
2 2
c) sin 900 sin90 0 cos cos 90 0 sin
= cos
d) cos 4 450 cos 2 150 cos 450 150 cos 450 150
www.eabhyasacademy.com
1 3
3
cos600 cos300
2 2
4
CHALLENGER
14
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
:
14.
15cos A 8 sin A 0 8 sin A 15cos A
tan A
15 opp
sin A
tan A
8
adj
cos A
15 8
sin A cos A 17 17
23
8 15
cisA sin A
2.
17 17
Hence hyp =
15.
sin A 15
cos A 8
15cot A 17 sin A
8tan A 16 sec A
8
15
17
15
17 23
15
17
49
8
16
6
8
15
16.
17 17
cos ec A sec A 15 8
119
cos ec A sec A 17 17
391
15 8
17.
1
0
Given 4cos 2 1 0 cos cos60
2
2tan
2tan600
2. 3
3
2
2
0
1 3
1 tan 1 tan 60
18.
2 3
2tan
2tan60
2 3
3
2
2
4
2
1 tan 1 tan 60 1 3
19.
1 tan2 60 1 3 2 1
2
1 tan2 60 1 3 4
2014 - 2015
tan 1600 tan1100
20.
0
0
1 tan160 .tan110
tan 180 20 tan 90 20
1 tan 180 20 tan 90 20
tan200 cot 200
= 1 tan 200 cot 200
1
p 1 p 2
=
1
2p
1 p.
p
www.eabhyasacademy.com
p
21.
tan 360 250 tan 720 20
tan6100 tan7000
0
0
tan 360 200 tan 360 110
tan 560 tan 470
tan 2500 tan 200
0
tan 200 tan110
CHALLENGER
0
tan 270 20 tan 360 20
tan 180 20 tan 90 20
15
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1
p
cot 20 tan 20 p
1 p2
1 1 p2
tan 20 cot 20
p
p
tan 180
tan60
30 tan30
tan 3600 600 tan 900 300
22.
0
300 tan 2700
0
0
0
cot 300
0
cot 300
:
23.
Given A B 450
tan A B tan 450
tan A tanB
1
1 tan A.tanB
tan A tanB 1 tan A tanB
tan A tanB tan A tanB 1
adding ‘1’ on both sides
1 tan A tanB tan A tanB 1 1
1 tan A 1 tanB 2
24.
Given A B 450
Apply ‘cot’ on both sides and get the result as cot A 1 cotB 1 2
25.
Tan 230 220 1
2014 - 2015
1.
tan 10 tan 20 .. tan 890
= (tan 10 tan 890) (tan 20 tan 880) .....
= (tan 10 tan (900 – 10) (tan 20 tan (900 – 20) ......
= (tan 10 . cot 10) (tan 20. cot 20) ..... [ tan (900– ) = cot ]
= 1 1 1.... =1.
2.
n(m2–1) = (sec +cose ). 2sin cos ) = 2
[ m2 = 1+2 sin cos ]
=
www.eabhyasacademy.com
3.
sin cos
.2sin cos 2m.
sin .cos
We have sinx + sin y = 3 (cos y – cos x)
sin x + 3 cos x = 3 cos y – sin y
........(i)
r cos (x– )= r cos (y + ),
where r =
10, tan
1
3
x – = (y+ ) x = –y or x + y = 2
CHALLENGER
16
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
Clearly, x = –y statisfies (i);
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
sin3x sin 3y
1
sin3y sin3y
1 sin
1 sin
is the sum of two positive quantities and hence the result must be positive. But for
1 sin
1 sin
4.
, we have the sum equal to
2
1 sin 1 sin
2
1 sin
2
cos ; which is negative.
( cos is negative for lying in 2nd quadrant). So the required positive value
=
5.
2
2sec ,( )
cos
2
We have
0
0
e log10 tan 1 log10 tan 2
0
elog10 (tan 1
log10 tan 30 .......... log10 tan 890
tan(900 1)tan 20 tan(900 20 ) .....1
0
0
0
elog10 (tan 1 cot 1 tan 2
cot 20 ......)
1
elog10 e 0 1.
6.
2sin
2
Given expression = (1 tan )2 (tan (1 tan ) sec )
7.
2sin
2sin
{tan tan2 1 tan2 }
2
(1 tan )
1 tan
2014 - 2015
We have, xy = (sec – tan ) (cosec +cot )
=
1 sin 1 cos
.
cos
sin
xy 1
=
1 sin cos sin cos sin cos
cos sin
1 sin cos
cos sin
www.eabhyasacademy.com
x-y - (sec –tab ) – (cosec +cot )
=
1 sin 1 cos sin sin2 cos cos 2
cos
sin
cos sin
=
sin cos 1
cos sin
Adding (i) and (ii), we get xy+1+(x–y)=0
x
y 1
y 1
CHALLENGER
17
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
8.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
sin2 sin2 sin2
tan2
tan2
tan2
2
2
1 tan 1 tan 1 tan2
x
y
z
(x tan2 , y tan2 , z tan2 )
1 x 1 y 1 z
(x y z) (xy yz zx 2xyz) xy yz zx xyz
(1 x)(1 y)(1 z)
1 x y z xy yz zx xyz
1
(1 x)(1 y)(1 z)
[xy yz zx 2xyz 1]
9.
0
sin55 sin35
sin100
=
10.
0
2cos
550 350
550 350
sin
2
2
sin100
2cos 450.sin100
2
sin100
As given
sin A sinB C
cos A cosB D
A B
A B
.cos
2
2 C tan A B C
A B
A B D
2
D
2cos
.cos
2
2
2sin
A B
2
Thus, sin (A+B) =
A
B
1 tan2
2
2tan
2014 - 2015
C
2CD
D
C2 (C2 D2 )
1 2
D
2
11.
tan700 tan 200
tan 500
www.eabhyasacademy.com
sin700 sin 200 sin700 cos 200 cos700 sin 200
cos700 cos 200
cos700 cos 200
sin500
sin 500
cos 500
cos 500
2 sin(700 200 )cos 50 0
2sin500 cos 50 0
2 cos700 cos 20 0 sin 50 0 2cos 70 0 cos 20 0 sin 50 0
2cos 500
2cos 50 0
2
cos 900 cos 50 0 0 cos 50 0
CHALLENGER
18
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
12.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
cot A
cotB
1
.
1 cot A 1 cotB (1 tan A)(1 tanB)
1
tan A tanB 1 tan A tanB
[ tan(A B) tan2250 ]
tan A tanB 1 tan A tanB
13.
1
1
1 tan A tanB t tan A tanB 2
4
5
We have, cos ( ) and sin( )
5
13
3
12
sin( ) andcos( )
5
13
3
5
2 sin1 sin1
5
13
3
25
5
9
sin1 1
1
169 13
25
5
56
56
2 sin1
sin 2 65
65
Now, tan 2
14.
sin 2 56 / 65 56
cos 2 33 / 65 33
cos 120 + cos 840 + cos 1560 + cos 1320
2014
= (cos 120 + cos 1320) + (cos 840 + cos
1560) -
2015
= 2 cos 720 cos 600 + 2 cos 360
1 1
2 cos720 cos 360
2 2
5 1 5 1 1
[cos720 cos 360 ]
4 2
4
15.
cos 90 sin90
cos 90 sin90
www.eabhyasacademy.com
divided by numerator and denominator by cos 90
cos 90 sin90
cos90
cos 90 sin90
cos90
1 tan90
tan(450 90 ) tan 540
1 tan90
16.
1
1
a
a
tan cos 1 tan cos 1
b
b
4 2
4 2
CHALLENGER
19
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1
1 a
x 2 cos b
tan x tan x
4
4
1 tan x 1 tan x 2(1 tan2 x)
1 tan x 1 tan x
1 tan2 x
=
17.
18.
2cos
9
3
5
.cos
cos
cos
13
13
13
13
= 2cos
9
4
5
.cos
2cos
cos
13
13
13
13
= 2cos
9
4
cos
cos
13
13
13
= 2cos
5
2cos cos
0
13
2
26
cos 2 0
cos120 sin120
sin147 0
cos120 sin120 cos147 0
19.
2
2
2b
cos 2x a / b a
1 tan120
tan1470 tan 330 tan 330 0
1 tan120
sin 120 sin 240 sin 480 sin 840
1
(2sin120 sin 480 )(2sin240 sin840 )
4
1
(cos 360 cos600 )(cos600 cos1080 )
2
2014 - 2015
1
1 1
(cos 360 )( sin180 )
4
2 2
11
1 1 1
1
( 5 1) ( 5 1)
4 4
2 2 4
16
and cos 200 cos 400 cos 60 cos 800
1
cos (600 200 )cos 200 cos(60 0 20 0 )
2
11
1 1 1
1
cos 3(200 ) cos600
2 4
2 8 16
8
20.
tan 90 – tan 270 – tan 630 + tan 810
= tan 90 – tan 270– cot 270 + cot 90
www.eabhyasacademy.com
= (tan 90 + cot 90) - (tan 270+cot 270)
cos(90 90 ) cos(270 27 0 )
2
2
sin90 cos 90 sin27 0 .cos 27 0 sin180 sin 540
sin540 sin180
2.cos 360.sin18
2
2.
4
0
0
sin180.sin540
sin18 sin 54
CHALLENGER
20
CHAPTER SOLUTIONS - 5
File No.24/21/29/12/2014
21.
1
1
tan3A tan A cot 3A cot A
22.
1
tan A tan3A
1
cot 2A
tan3A tan A tan3A tan A tan 2A
sin x cos x
1
5
sin2 x cos 2 x 2sin x cos x
sin 2x
23.
IX CLASS - IIT/N.T.S.E FOUNDATION -OLYMPIAD
1
25
24
7
24
cos 2x
tan 2x
25
25
7
Given that ABCD is a cyclic quadrilateral.
So A+C = 1800 A = 1800 -C
cos A = cos (1800-C) = –cosC
cos A + cos C = 0
Similarly, cosB + cosD = 0.
....
(1)
....
(2)
Adding (1) and (2)
Cos A + cos B + cos C + cos D = 0
24.
In ABC, A B C 1800
sin A sinB sinC
2sin
A B
A B
C
C
cos
2sin cos
2
2
2
2
A B
A B
C
C
2sin cos
2cos sin
2
2
2
2
2 2
25.
2014 - 2015
2cos
C
A B
C
A B
cos
2cos cos
2
2
2
2
2cos
C
A B
A B
cos
cos
2
2
2
2cos
C
A
B
A
B
C
2cos cos 4cos cos cos
2
2
2
2
2
2
sin 2A + sin 2B + sin 2C = 4 sin A sinB sinC
and cos A + cos B + cos C –1= 4 sin
A
B
C
sin sin
2
2
2
www.eabhyasacademy.com
4 sin A sinB sinC
A
B
C
8cos cos cos
2
2
2
Hence 4 sin A sin B sin C
2
2
2
NOTE :- LEVEL - III -
23,24 Questions Statement is not entered
So, Statement is : If A + B = 450
CHALLENGER
21
CHAPTER SOLUTIONS - 5
© Copyright 2025 Paperzz