6. Note for (a) N = y 2 + x, M = −x2 . For (b), the vector field is conservative. Final Review Answer 1. M = 3x2 y − 2y 3 + 5, N = x3 − 6xy 2 + 2y (a) (b) Z 2xydx + x2 dy = F · dr = f (r(2π)) − f (r(0)) = 0 F · dr = f (r(π)) − f (r(0)) which is = f (−1, −1) − f (5, −1) Alternatively you could choose a straight line path from (5, −1) to (−1, −1) and evaluate the line integral of F over it. −3(x − 2) − 2(y − 3) + (z − 6) = 0 (b) ru = h4 cos v, 4 sin v, 1i and rv = h−4u sin v, 4u cos v, 0i, so N = ru × rv = h−4u cos v, −4u sin v, 16ui. Hence 2. The pot. fn. is f (x, y, z) = 12 (x2 + y 2 ) − z 3 . ZZ SA = Using the FTOLI, ||N|| dA S F · dr = f (−1, 0, π) − f (1, 0, 0) = −π 3 Z 2π Z 3 q = √ 1 2 3 = 2π 4 17 u 2 0 √ √ = 9(4π) 17 = 36π 17 3. Z 4D E 4t − t2 , −t · h1, 4 − 2ti dt = 21 1 C 4. The pot. fn. is f (x, y) = x2 y + K. (c) ru = k and rv = −3 sin vi−3 cos vj, so N = ru × rv = h−3 cos v, −3 sin v, 0i. Hence Using the FTOLI, Z ZZ SA = F · dr = f (8, 5) − f (0, 0) = 320 ZZ R = 0 4x3 dydx = (b) Green’s thm. for area, (NOT Fig. 2) = Z C1 = 3 2 + 3 = 2 F · dr ZC F · dr + C2 Z π/2 Z (1 + r2 )r dr dθ = 0 3π 2 (b) Using the Divergence Theorem Z ZZ F · dr C3 cos4 t sin2 t + cos2 t sin4 t dt = F · NdS S ZZZ div(F) dV Q 0 Z 1 1 + x2 + y 2 dA R 2π Z 1 0 Z F · dr + = F · NdS ZZS 0 area(R) = 9π 2 8. (a) N = h2x, 2y, 1i, So 4x3 dA 4 Z 1Z √ 1−x4 3 du dv = 0 0 2y 3 dx + (x4 + 6y 2 x) dy C ZZ = Z = 5. (a) Using Green’s thm.,(see Fig. 2) ||N|| dA S π/2Z 3 C Z 16(17u2 ) du dv 0 0 C F · dr = 0 dA = 0. R 7. (a) ru = h1, 0, vi and rv = h0, 1, ui, so N = ru × rv = h−v, −u, 1i. At the point (2, 3, 6), N = h−3, −2, 1i. Equation of tangent line is C1 Z ZZ C (c) If you know pot. fn., use FTOLI and Z 1 dA R = area(R) = 81 π C1 Z ZZ (y 2 + x)dy − x2 dx = C (a) Nx = 3x2 − 6y 2 = My hence cons. (b) By FTOLI Z Z 0 dt + 0 Z π/2 Z 1 0 dt 2 + 3 + 4 dV 2 4 = 9 · vol(Q) = 9 π33 3 Q 0 2 ZZZ = cos t sin t dt 0 1 (c) Using the Divergence Theorem ZZ ZZZ F·NdS = S div(F) dV = ZZZ Q 0 dV Q (d) Using Gauss Theorem ZZ F · NdS S ZZZ = Z = div(F) dV Q 4Z 5 Z 4−x 0 + 2y + 0 dzdydx = 200 0 0 0 9. Use Stokes theorem to evaluate Z F · dr C (a) We take as S the plane whoseZ boundary F · dr = is C. Using Stokes’ Theorem C ZZ curl(F) · NdS. Use (i + j + k) × 2j for normal to the plane and find eqn of plane to be z = x. So that N = h−1, 0, 1i. The region, D, to integrate over is the triangle in the xy-plane whose vertices are (0, 0), (0, 2) and Z (1, 1). Since curl(F) = S F · dr h−3, −1, −2i, C = = ZZ curl(F) · NdS ZZS h−3, −1, −2i · h−1, 0, 1i dA D 1 = (2)(1) = 1 2 (b) curl(F) = x2 i − 2xyj + y 2 k If we use g(x, y) = 6 − x, then N = (i + k)and the region, D, to integrate over is inside the circle in the xy-plane of radius 2. = area(D) Z = = = F · dr C ZZ curl(F) · NdS ZZS D E x2 , −2xy, y 2 · h1, 0, 1i dA ZZD x2 + y 2 dA D = Z 2πZ 2 0 = 2π r3 dr dθ 0 r4 4 !2 = 8π 0 2
© Copyright 2026 Paperzz