MATH 137 Integration By Parts Evaluate the following integrals using integration by parts: 1. ∫ x sinh(6x) dx € € € 2. ∫ € dx x cos(4 x) € € € 3. ∫ € x sin(2x) dx u= x v ′ = sinh(6x) dx ↓ diff ↓ int 1 v = cosh(6x) 6 u′ = 1 € x 1 ∫ x sinh(6x) dx = uv − ∫ u′ v = 6 cosh(6x) − ∫ 6 cosh(6x) dx x 1 € = cosh(6x) − sinh(6x)+ C 6 36 u= x v ′ = cos(4 x) dx ↓ diff ↓ int 1 v = sin(4 x) 4 u′ = 1 € x 1 ∫ x cos(4 x) dx = uv − ∫ u′ v = 4 sin(4 x) − ∫ 4 sin(4 x) dx x 1 € = sin(4 x) + cos(4 x)+ C 4 16 u= x ↓ diff € € € 4. € ∫ x e−10 x dx € € € € v ′ = sin(2x) dx ↓ int 1 v = − cos(2x) 2 u′ = 1 € x 1 ∫ x sin(2x) dx = uv − ∫ u′ v = − 2 cos(2x) + ∫ 2 cos(2x) dx x 1 € = − cos(2x) + sin(2x)+ C 2 4 u= x ↓ diff v ′ = e−10 x dx ↓ int 1 v = − e−10x 10 u′ = 1 € x 1 ∫ x e−10x dx = uv − ∫ u′ v = − 10 e−10x + ∫ 10 e−10x dx x 1 −10x € = − e−10x − e +C 10 100 Solutions 5. ∫ ln x dx x6 v ′ = x −6 dx u = ln x ↓ diff 1 u′ = x ↓ int 1 v = − x −5 5 ln x ln x 1 −6 ∫ x 6 dx = u v − ∫ u′ v = − 5x 5 − ∫ − 5 x dx ln x 1 −6 + ∫ x dx 5x 5 5 ln x 1 =− 5 − +C 5x 25x 5 =− u = x2 ↓ diff 6. ∫ x 2e −3x dx u′ = 2 x v ′ = e−3x dx ↓ int 1 v = − e −3x 3 1 2 −3x 2 −3x 2 −3x ∫ x e dx = u v − ∫ u′ v = − 3 x e − ∫ − 3 x e dx 1 2 = − x 2e −3x + ∫ x e −3x dx 3 3 Use integration by parts again on the last integral: 2 x 3 2 u′ = 3 u= 2 3 v ′ = e−3x dx 1 v = − e −3x 3 2 9 2 9 2 9 2 9 ∫ x e −3x dx = u v − ∫ u′ v = − x e−3x − ∫ − e −3x dx = − x e −3x + ∫ e−3x dx =− Thus, 2 −3x 2 −3x xe − e +C 9 27 1 2 2 2 −3x 2 −3x −3x −3x ∫ x e dx = − 3 x e − 9 x e − 27 e + C 7. ∫ x 2 cos(4 x) dx u = x2 ↓ diff v ′ = cos(4 x) dx ↓ int 1 v = sin(4x ) 4 u′ = 2 x 1 1 2 2 ∫ x cos(4 x) dx = u v − ∫ u′ v = 4 x sin(4 x) − ∫ 2 x sin(4 x) dx Use integration by parts again on the last integral: 1 u= x v ′ = sin(4 x) dx 2 1 1 u′ = v = − cos(4x ) 2 4 1 1 1 1 1 ∫ 2 x sin(4 x) dx = u v − ∫ u′ v = − 8 x cos(4 x) − ∫ − 8 cos(4 x) dx = − 8 x cos(4 x) + 8 ∫ cos(4x ) dx 1 1 = − x cos(4 x) + sin(4x ) + C 8 32 Thus, 1 1 1 2 2 ∫ x cos(4 x) dx = 4 x sin(4x ) − − 8 x cos(4 x) + 32 sin(4x ) + C 1 2 1 1 x sin(4x ) + x cos(4 x) − sin(4x ) + C 4 8 32 = 8. ∫ ln x dx u = ln x v ′ = dx ↓ diff 1 u′ = x ↓ int v=x ∫ ln x dx = u v − ∫ u′ v = x ln x − ∫ 1 dx = x ln x − x + C 9. ∫ x sec2 x dx u=x ↓ diff u′ = 1 v ′ = sec 2 x dx ↓ int v = tan x 2 ∫ x sec x dx = u v − ∫ u′ v = x tan x − ∫ tan x dx = x tan x − ( − ln cos x ) + C = x tan x + ln cos x + C 10. ∫ x dx (4 − x )6 u=x v ′ = (4 − x )−6 dx ↓ diff ↓ int (4 − x) −5 v= 5 u′ = 1 x x (4 − x) −5 dx = u v − u v = − dx ′ ∫ ∫ ∫ 5 (4 − x )6 5(4 − x )5 = (4 − x )−4 − +C 5(4 − x)5 5(−4)(−1) = x 1 − +C 5(4 − x)5 20(4 − x)4 x Use the tabular method of integration by parts to evaluate the following integrals: 11. ∫ x 4 sin(3x ) dx Take derivatives down the first column, integrate down the second column, then multiply across the rows: u = x4 4 x3 12 x 2 24 x 24 0 4 ∫ x sin(3x ) dx = − v ′ = sin(3x) 1 − cos(3x ) 3 1 − sin(3x) 9 1 cos(3x) 27 1 sin(3x) 81 1 − cos(3x ) 243 + – + – + x 4 cos(3x) 4x 3 sin(3x) 12x 2 cos(3x ) 24 x sin(3x ) 24 cos(3x ) + + − − +C 3 9 27 81 243 12. ∫ x 3e −2 x dx v ′ = e−2 x 1 − e −2x 2 1 −2x e 4 1 − e −2x 8 1 −2x e 16 u = x3 3x 2 6x 6 0 ∫ x 3e −2x + – + – x 3e−2 x 3x 2 e−2 x 6 x e −2 x 6e−2 x dx = − − − − +C 2 4 8 16 =− e −2x 2 3 3x 2 3x 3 x + + + +C 2 2 4
© Copyright 2026 Paperzz