A)e arcsin (7x) +y = x C)e arcsin (7x) + A) arcsin (4x)4p1 ⇡ 6 Quiz 18 B) 2⇡ 34 16x2 C) ⇡3 C) arcsin (x)p1 16x2 ⇡ Example 1: ⇡ B) 2⇡ C) 6 p 5x p e 1 49x2 5x 3 3 5 64 ⇣x⌘ B)e (7x) x2 5x+arcsin 5 arcsin + 5 ✓ 10x (7x) ◆ + D)e arcsin 1 49x2 e y = arcsin 1p 10 B) p 7e5x 5x 5x p7e 5 1 49x2 Math 1431 5x p7e 2 5 LAB 1+49xsession arcsin (4x) 1 16x2 D) ⇡4 D) arcsin (4x)4p1+16x2 D) ⇡4 3 2 Find derivative of 1 y = sinh (4x + 10x ) 5 25x2 +60x+36 B) 25x2 +60x+37 1 25x2 +60x+36 5 5 y = sinh ln (5x ) D) 25x2 +60x+37 e5x arcsin (7x) + ex arcsin (7x) + 4p arcsin (4x) 1 16x2 4p arcsin (x) 1 16x2 5x p e 1 49x2 y = (cosh (6x))x B)e5x arcsin (7x) + 5x p7e 5 1 49x2 y 5x = A sinh (Cx) + B cosh (Cx) p7e 5 1 49x2 D)e5x arcsin (7x) + B) arcsin (4x)1p1 10 16x2 D) arcsin (4x)4p1+16x2 y = sinh (4x3 + 10x2 ) Example 2: Find derivative of y = sinh ln (5x5 ) y = (cosh (6x))x y = A sinh (Cx) + B cosh (Cx) 10 5x p7e 5 1+49x2 11 y = sinh (4x + 10x ) Example 3: y = sinh ln (5x5 ) Find derivative of y = (cosh (6x))x y = A sinh (Cx) + B cosh (Cx) 10 y = (cosh (6x))x Example 4: Determine A, B, and C so that y 00 y = A sinh (Cx) + B cosh (Cx) 4y = 0 10 y(0) = 3 and y 0 (0) = 2 11 satisfies the conditions p 6 5 0 y(0) = 3 and y (0) = 2 Question # 5y = 25 x2 p y = x+5 Find derivative of y = 3 cosh (5x) sinh (5x) 2 y = 5e 3x = ln cosh (6x3 )2 (5x) + cosh2 (5x)) A)15(sinh2 (5x) + cosh2 y(5x)) B)3(sinh 5y = 25 C)15(sinh2 (5x) cosh2 (5x)) D)(sinh2 (5x) + cosh2 (5x)) y= 4y = 0 p x+5 y = 5e 0) = 3 and y 0 (0) = 2 A)15(sinh2 (5x) + cosh2 (5x)) Question # x2 3x2 B)3(sinh2 (5x) + cosh2 (5x)) y = 3 cosh (5x) 11 sinh (5x) 2 2 C)15(sinh (5x) cosh (5x)) Find derivative of y = ln cosh (6x ) 3 A) 18x2 cosh (6x3 ) sinh (6x3 ) B) 18x2 sinh2 (6x3 ) cosh (6x3 ) C) 18x2 sinh (6x3 ) cosh (6x3 ) D) 18x2 sinh (6x3 ) cosh2 (6x3 ) D)(sinh2 (5x) + cosh2 (5x)) 11 11 Quiz 19 = 3 cosh (5x) sinh (5x) Example 5: y =Find ln cosh (6x3 ) the largest possible area for a rectangle with base on the x-axis and upper vertices on the curve y = 16 11 x2 Example 6: Of all the rectangles with an area of 420 square feet, find the dimensions of the one with the smallest perimeter. Example 7: Of all the rectangles with a perimeter of 52 feet, find the dimensions of the one with the largest area. Example 8: A rectangular playground is to be fenced off and divided into two parts by a fence parallel to one side of the playground. 640 feet of fencing is used. Find the dimensions of the playground that will enclose the greatest total area. y = 16 x2 Example 9: Find A and B given that the function p p A p y= +B x x 6 5 11 p has a minimum value of 6 5 at x = 5. y=p p 6 5 Example 10: Find the coordinates of the point(s) on the curve 5y = 25 11 x2 that are closest to the origin. 2 3) 2 3 sinh (6x C) 18xcosh 3 Question(6x # ) sinh (6x ) D) 18x 2 3) y 00 4y = 0 cosh Of all the (6x rectangles with a perimeter of 40 feet, find the dimensions of the one with the largest area. A)169 B)144 y(0) = 3 and y 0 (0) = 2 C)121 D)100 y = 3 cosh (5x) sinh (5x) 11 y = ln cosh (6x3 ) x2 y = 16 p 6 5 Question # Find the coordinates of the point(s) on the curve A)169 B)144 C)121 D)100 ⇣ p ⌘ ⇣ p ⌘ ⇣ p ⌘ 45 13 13 19 A) 2 ; 2 B) 2 ; 2 C) 19 ; 258 2 p A y = p +y 00B 4y x =0 x y(0) = 3 and y 0 (0) = 2 x2 5y = 25 y= D) ⇣ p 17 ; 2 y = 3 cosh (5x) sinh (5x) x + 5 that are closest to the point (10, 0). p 35 2 ⌘ y = ln cosh (6x3 ) p y = 16 x2 p A p y= +B x x 6 5 5y = 25 Question # A)169 B)144 C)121 D)100 ⇣ p has ⌘ one side ⇣ on ⌘ x-axis ⇣and the ⌘ A rectangle two⇣ vertices on the graph of p the p upper p ⌘ 45 13 58 35 13 19 19 17 should be placed to maximize A) 2 the ; 2verticesB) ; 2 so as C) ; 2 the area D) of 2the ; rectangle? 2 2 2 11 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 1 5 1 5 1 3 1 3 p ;p p ;p A) p6 ; pe and B) p7 ; pe and e e 6 7 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ p1 ; p3 p1 ; p5 C) p14 ; p3e and D) p18 ; p5e and e e 4 8 y= p x2 x+5 y = 5e 3x2 . Where
© Copyright 2026 Paperzz