Chapter 2 Note Packet

LL
1
___
Section 2.1
Relation:
pJ
pa
QQ
Relations and Functions
c1E inpj- Ur c*p-
Li
SQl:
Example 1: Graphing a Relation
Graph the relation {(-2, 4), (3, -2), (-1, 0), (1, 5)}.
Domain: fry
//
rj
cQcQÔ pccs. c
Range:
ThQ
oco aYpc\
cHQ
Voj
cc
Example 2: Finding Domain and Range
Write the ordered pairs for the relation shown in the graph. Find the domain and range.
5),
.i
)
vmcr
4
doo.n
onc [&nQ
CVüJ( ±hQ. VC.wS 4
CfY\ O5 +c
cni
iTie os cuj cWctd
•DS JtQ- f cr
-
b
Sxo-AD O r tttc. 1-H
hQ Cocc tn 1-hp
ftWQ
JO
3
Mapping Diagram: flQth[ \)3
oc
rriuppro
dQQ
Example 3: Making a Mapping Diagram
Make a mapping diagram for the relation {(-1,-2), (3, 6), (-5, -10), (3, 2)}.
Function:
4r Ohch +iQ is KQC
np;J
Yp±
r’i
QcxcZh
fcc
Example 4: Identifying Functions
Determine whether each relation is a function.
b.
a.
Doinan
Range
Range
Dornan
i
Nof
‘npt c z
c 3.
hs -Fjo
R -Rnc+1crL SncQ QCO np*
i\Q
coi-ptS;
VOi’J& flG\S
(Y cL*p3OJuQ
-
Vertical-Line Test: 1J-c
Cc.
0
L.
ct
1fr cook
tflQ
I.S
mccc
flT ft
* I
c
fX.
Example 5: Usmg the Vertical-Lme Test
Use the vertical-line test to determine whether each graph represents a function.
b.
a.
—2
F’bnc-cr,
0
hot-
n
m
__
Function Rule:
cc\ c-\ QjQ n 1QfO O
Function Notation:
Example 6:
Findf(-3),J(O), andf(5) for each function.
a. f(x)=3x—5
3
Ei
=fEI1
=
3
b. f(a)=—a—1
9
-
E1_
O13
c. f(y)=——y+-
=
Y)=
*&
ii
-
-.
—3.3
-
L2
-
3
cw
Linear Equations
Section 2.2
Linear Function:
1
cc’e
Linear Equation:
rQ_ Qn
Dependent Variable:
Independent Variable: —-\.
.
Example 1: Graphing a Linear Equation
Graph the equation y
2
=
—
x+3
os
Cc
;
nd n.Q
\) -VOks:
-
-.
—
..
SIope:_,
co o o +\
LQçocc\f\
cwQ
Slope Formula:
Vi+c
-
ch Cc
ckar
(
Example 2: Finding Slope
V.
Find the slope of the line through points (3, 2) and (-9, 6.
1--
—
hc
D
(1-
0)
cf’
-
L
a
r
AL
0
-d
-
(ID
a)
+
II’
11
c
-
-d
1
C?
—I
=1
<
I’
+
I)
“p
c-nJ
0
a)
0
C)
C
C)
0
rI)
C
ci)
o
-C
o
a
+
II
C
—
-c
0.4
0
““
----
---
.
)
Hill
I
I•
C
0-
i
9E
C
:1
4iL
i:::t
C
&
C
&o)
C
r
c—
v)
ci
C)
C—
—s
E
C
(Z)
t
3d)
..h&
:4
-6
2?
—
.0
H
-S
fr
:1_c
Example 5: Graphing Lines Using Intercepts
Graph 6x+3y=12.
v3( 1Z
Cz
o
1
)
xa
O)
:::::::::
i-3 cjZ
Lf
Exampl 6:
The equation 3x+ 2y = 120 models the number of passengers who can sit in a train car,
where x is the number of adults and y is the number of children. Graph the equation.
Explain what the x- and y-intercepts represent. Describe the domain and range.
\( fl
..S(
3L)
OQ
L{Q
Ckcc -&\Q 9
b s
Q
4
SSSSSSS
hQfl
SS
1Who
*
--S-”
[U
S
4
-
S
GIPJH
Example 7: Transforming Into Slope-Intercept Form
Graph 4x—2y=9.
L<
:::::::
-9\,
:::i:::::::::
;
9
4
.i.
..
..
5*
=Zx
t,
:t*””
5
L
6
cicci-i
0
25yj
3xizo
X (Q
i (4oj hch QOJ *Oc+
LC) CdO± C[Q
cod) fl Cdiñ (f’ St,
-QvcØ s (OO) c 1Q(J *C± 5Qfl
55i
Point-Slope Form:
The line through point 1
(x 1
,
y with slope
)
\
(\kr)
i
N
j
m
has the equation:
(\4\
Example 8: Writing an Equation Given the Slope and a Point
-.
L1
Write in standard form an equation of the line with slope
through the point (8, -1).
——
SQ
4ccs-ciri
qQb
ndüc -forte
+O (x-)
‘k ±K-)
+
• kx-i
—1 ri\
Example 9: Writing an Equation Given Two Points
Write in point-slope form the equation of the line through (1, 5) and (4, -1).
*i
S c:
3
Q-Qç
-
cc c -e
3
Sp
\oc(
cV\ \C
Yk
3
Summary of Equations of a Line:
Point-Slope Form
Standard Form
7
Slope-Intercept Form
Lines with slopes that have special properties:
Horizontal
Vertical Line
tine
cft s
V
(S (Dflf-jj
IS
Parallel Lines
Perpendicular Lines
VI
‘
= fll.,x
+
.
2
=m
—
A
Ccns+q-
4bE*bz
(op
‘
\
[QC
pro
-ic(Q4s
cw
Example 10: Writing Equations of Parallel Lines
Write an equation of a line parallel to y = —4x+ 3 that contains the point (1, -2).
1\
,
-2)
K +4
N
Example 11: Writing an Equation of a Perpendicular Line
x +2. Graph
Write an equation of the line through each point and perpendicular to y
all three lines.
R
ppenthcoir
W’Q- flQô3 4o
‘1O\JQ
\(Yz
__
a. (0, 4)
\j4 -(xo)
\jLI
‘ii.
=-4
E:::::
:stzibtz:
b. (6, 1)
“4._j
E_i\JL:
3\J’
*—
—
-
-H
8
I
pwL
2.4 — Using Linear Models
Example 1:
Jacksonville, Florida has an elevation of 12 ft above sea level. A hot-air balloon taking
off from Jacksonville rises 50 flJmin.
icc
a. Write an equation to model the balloon’s
elevation as a function of time.
t
cv\
\flS
b. Graph the equation.
c. Interpret the intercept at which the graph
intersects the vertical axis.
ThQ c)\
N’ ftL C (2<
DftS thQ Va-hci1
crc
Example 2:
()
jj j
IhL()
1t,
A candle is 6 in. tall after burning for 1 h. After 3 h, it is 5— in. tall. Write a linear
equation to model the height y of the candle after burning x hours.
Sk I \ nQ
53)
‘
S2 ñCSoOQ
—
V
—
after I h
-i---
3
\:Q
-SoQ
-ioç-v
-•o
ox,’
11
I .J
\t1
-r
•_c .t
&
‘
after 3 h
Example 3: Using a Linear Model
Use the equation from example 2. In how many hois will the candle be 4 in. tall?
H
X)
7
+
Cj
hurS
*hQ card
/J
bt iflcxç
Scatter Plot:
ft
o
\QpQ jj
’
0
) hQ
1
i\c:
(. VQC pocs
—
*
•
•
:1*
•
——
,
X
p*i \j
C:-C Q Ck
Trend Line:
a
L
•
ccq
1
pt
n
—
No (eQOcñ
•&c\C\jQ
C
cQc
a
a
koo
Cj
ntc
-\-\- onp
c o Scr poj-
.“
+‘
Example 4:
A woman is considering buying a 1999 car for $4200. She researches prices for various
years of the same model and records the data in a table.
(i pr EQ tOLic
Modet Year
2000
2001
20O2.200.,. 2004
Prices.
$57x4
XW
$8. $9660
$io,94s
$5435
$62f 17
$7751
$9127
$1ft455
r
coo ‘c 2OO
Q,\ccyi (QOi
\io\ bQ
a. Let x represent the model year. (Use 1 for 2000, 2 for 2001, and so forth.) Lety be
the price of the car. Draw a scatter plot and decide whether a linear model is
reasonable.
nc +he dQ p
-#°\\ Cos -fo
b
\
C
‘--I
Qc’SQb\Q
b. Draw a trend line. Write the equation of the
line. Determine whether the asking price
is reasonable.
1hQ Sap
c?)
v
The—
rpncQ
O
4
11
I
Absolute Value Functions and Graphs
Section 2.5
n
Absolute Value Function:
Vertex:
Q1Q
ThQ \
QSQ
1
OV
N
‘
*C
‘
ch
s \cx
O: i
Example 1: Graphing an Absolute Value Function
a. Graph y = 3x +12j.
ti C 0
i-
\efkX: /-2
N
Po Ofl
-
::T
:::::::: :
4o)
*Q1
t
oc
E.EE E
E
E
1
)(jSI
\(Q±y..
I
3
3
\l_
I b. Gr ph y=—J2x+6)—2
(4
L._4__
U’2
I
2:)
-
V
Example 2: Using a Graphing Calculator
+6.
Graph
y=—13x+41
-
I
12
—V
E
Families of Functions
Section 2.6
Parent Function:
4
c3
\oà
4cw
o
crCr
-\or
\OQ
Translation:
c
Vertical Translation:
V
4\fQ
\Ofl
±
h)
yQ
X
\\-
Horizontal Translation:
coc
0.- YSit’JQ
cVb’f
ç
O1\Ofl
ticn\S
\jKL
xL
Q\
Example 1: Vertical Translation
a. Describe the translation y
\JQ1u\
cf I(
?
Ix —3 and draw its graph.
(zx\
mt
b. Write an equation to translate y =
-kçcii C\ y\
unit.
up
1’
/
13
cwid
Example 2: Horizontal Translations
a. The graph with the vertex at x
graph.
b. Describe the translation
tcJcDy\
cc
=
5 is a translation of y = x. Write an equation for the
+3
and draw its graph.
x( o
Q
Summary of The Family of Absolute Value Functions:
Vertical Translation
Parent Function:
I I
Translation up k units, k> 0:
x( 4
=
\(
Translation down k units, k> 0:
Ix H
Horizontal Translation
Parent Function:
I
\)
Translation right h units, h> 0:
X
Translation left h units, h> 0:
Combined Translation
(right h units, up k units)
IX
\
-
14
‘t
t
j + ft
Vertical Stretch:
,
(Qc
1> S**c
b c
ccph
Vertical Shrink:
0
I
Example 3: Graphing y
ccu
lxi.
fU Sreh
/
-ía
J
L
±1: :1:t:!
,11
K
F
S
T
2.
o
b. Write an equation for a vertical shrink of y =
Reflection:
//
-I
.
7/
ccpcrn
c
bQ+jr
aixi
a. Describe and then draw the graph of y =2
(1
fcc-ci
lxi by a factor of
\) .\1Qjj
rQ-ccbon
o$s
Qi
Example 4: Graphing y = —a
I.
ThQ coLp\m
Q\ctS
lxi
Which equation describes the graph?
a.
b.
I
I
I
I
I
I
I
1
1
y=—x
I
1
(c.’ y=——x
2
1
d. y=—.-x
—----------.--
15
iii s
Vj
Qc*o of
3D tb COiC Si(
‘Sc.
______
______
__________
Two Variable Inequalities
Section 2.7
Linear Inequality:
c)-
pi
;
_-
QoccoQ
For an inequality with
For an inequality with
>
bondd
1 c v’ Q
b\
QOk ‘
or
shade below the line.
or
shade above the line.
1;+
v
A solid boundary line indicates that the
line is part of the solution.
y>
—
A dashed boundary
line indicates that
the line is not part
of the solution.
I
I
-1
Example 1: Graphing a Linear Inequality
x —3.
a. Graph the inequality y
Step 1: Graph the boundary line.
Step 2: Shade the appropriate region.
(c,-’)
Cc:
Lc3
.7
b. Graph the inequality 3x 4y
—
12
...
..
Step 1: Solve for y
.
k.j
N
Ni
.-q
\J3
—
Step 2: Graph the boundary line.
N
Step 3: Shade the appropriate region.
(oc
17
/
Z1:
ES S4
Example 2: Graphing Absolute Value Inequalities
Graph each absolute value inequality.
a. yjx—4+5
A
ft.
-- .c
7
-.
. .
\\
,
.,.—
\\
—
f
,\
.:
\
.
.
,
%‘
-
\\ \\
-
\—
‘
—
\ \
V
“
cc
..-
..
\ \ -V \.
‘
..
‘
L.
\‘
.
\
\‘.
c.
\
‘
I
c
-
.-
c
‘,
-
..
—
.
\
\.
-
.
-
—
—
.
—
‘
s
...
.\
‘
k.
\
-
‘
b. —y+3>x+l
HX+L *3
I
H-
—I—I—I—’—
— —
I—t4—4—
r
— -I—
—
—4—4—4—4—
—
.-
—4—4—4—4—
—
—
.—
—‘—‘—4—4—
±L*LthZZ’±IZt:
K+)HF3
..--
/
,--.z,
\
,s
-
.
r
_4
Example 3: Writing Inequalities
The graph is the solution of which inequality?
a. y>x—3I+2
b. y<jx—31+2
) yx—3+2
d. y)x—3J+2
-
z
-