Sieve of Eratosthenes copyright©amberpasillas2010 Eratosthenes (ehr-uh-tahs-thuh-neez) Eratosthenes was a Greek mathematician, astronomer, and geographer. He invented a method for finding prime numbers that is still used today. This method is called the Sieve of Eratosthenes. copyright©amberpasillas2010 1 Sieve of Eratosthenes A sieve has holes in it and is used to filter out the juice. Eratosthenes’s sieve filters out numbers to find the prime numbers. copyright©amberpasillas2010 FACTOR A Factor is a number that is multiplied by another number to give the product. 7 x 8 = 56 Factors copyright©amberpasillas2010 2 FACTOR A Factor is the number that divides evenly into another. 56 ÷ 8 = 7 Factor copyright©amberpasillas2010 PRIME NUMBER A Prime Number is a number that has only two factors, itself and 1. 7 7 is prime because the only numbers that will divide into it evenly are 1 and 7. copyright©amberpasillas2010 3 Hundreds Chart I am going to give you a hundreds chart with the numbers from 1 to 100, with 10 numbers in each row. You are going to use the Sieve of Eratosthenes to discover the prime numbers between 1 and 100. copyright©amberpasillas2010 Hundreds Chart 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 4 1 – Cross out 1; it is NOT prime. 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 Hint For Next Step Remember all numbers divisible by 2 are even numbers. Remember they end in 0, 2, 4, 6, 8… copyright©amberpasillas2010 5 2 – Leave 2; Cross out multiples of 2 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 Hint For Next Step To find multiples of 3, add the digits of a number. If the sum divides evenly by 3 then the number is a multiple of 3. 267 Add the digits: 2 + 6 + 7 = 15 15 is divisible by 3 so 267 is a multiple of 3 copyright©amberpasillas2010 6 3 – Leave 3; Cross out multiples of 3 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 Hint For the Next Step Remember the number 4 is a multiple of 2 and an even number. You don’t have to do multiples of 4 since you already crossed off multiples of 2. copyright©amberpasillas2010 7 Hint For the Next Step To find the multiples of 5 look for numbers that end with the digit 0 and 5. 385 is a multiple of 5 and 890 is a multiple of 5 because the last digit ends with 0 or 5. copyright©amberpasillas2010 5 – Leave 5; Cross out multiples of 5 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 8 Hint For the Next Step Remember a number is divisible by 6 if it is divisible by 2 and 3. Since you have already crossed out multiples of 2 and 3 then you have already done multiples of 6. copyright©amberpasillas2010 7 – Leave 7; Cross out multiples of 7 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 9 Hint For the Next Step Remember the number 8 is a multiple of 2 , the number 9 is a multiple of 3, and the number 10 is a multiple of 2. What number do you think is next? copyright©amberpasillas2010 11 – Leave 11; Cross out multiples of 11 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 copyright©amberpasillas2010 10 The leftover numbers are prime numbers. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 copyright©amberpasillas2010 Circle the rest of the primes on your chart. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 copyright©amberpasillas2010 11 A prime number is a number that has no factors other than 1 and itself. There are 25 prime numbers from 0 to 100. Check your list to make sure you have them all! The Prime Numbers from 1 to 100 are as follows: Write these down on the bottom of your paper: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 copyright©amberpasillas2010 Composite numbers have more than 2 factors. PRIME FACTORIZATION is the unique set of prime numbers whose product equals a given number. Write the prime factorization for the following. 24 24 Factor 2 12 4 6 Tree 2 6 2 2 2 3 2 3 23 • 3 23 • 3 copyright©amberpasillas2010 12 Take Out Your Study Guide!!! copyright©amberpasillas2010 #3 FACTOR A Factor is a number that is multiplied by another number to give the product. 7 x 8 = 56 Factors A Factor is the number that divides evenly into another number. 56 ÷ 8 = 7 Factor copyright©amberpasillas2010 13 #4 Prime & Composite Prime NumbersA Prime number is a whole number with exactly 2 factors, one and itself. Example: 17, 3, 2, 11, 13, 5 Composite NumbersA Composite number is a number that has more than two factors. Example: 9, 30, 64, 8, 40, 69 copyright©amberpasillas2010 Teacher Note: Use the next slide as a master. Make one copy for each student to use to do this interactive lesson on discovering prime numbers copyright©amberpasillas2010 14 Hundreds Chart 1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 19 29 39 49 59 69 79 89 99 10 20 30 40 50 60 70 80 90 100 15
© Copyright 2025 Paperzz