Name: ________________________ Class: ___________________ Date: __________ ID: A Trigonometry - Unit 2 Review Problem Set 5. What is the number of degrees in an angle whose measure is 2 radians? 360 a. 1. Find, to the nearest minute, the angle whose measure is 3.45 radians. b. 2. What is the number of degrees in an angle whose 11π radian measure is ? 12 a. 150 b. 165 c. 330 d. 518 c. d. π π 360 360 90 6. Find, to the nearest tenth, the radian measure of 216º. 3. What is the radian measure of an angle whose measure is −420°? 7π a. − 3 7π b. − 6 7π c. 6 7π d. 3 7. Convert 3 radians to degrees and express the answer to the nearest minute. 8. What is the number of degrees in an angle whose 8π ? radian measure is 5 a. 576 b. 288 c. 225 d. 113 4. Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians. 9. Approximately how many degrees does five radians equal? a. 286 b. 900 c. d. 1 π 36 5π Name: ________________________ ID: A 10. What is the radian measure of the smaller angle formed by the hands of a clock at 7 o’clock? a. b. c. d. 14. A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle? 3π a. 4 b. π 3π c. 2 d. 3π π 2 2π 3 5π 6 7π 6 15. Circle O shown below has a radius of 12 centimeters. To the nearest tenth of a centimeter, determine the length of the arc, x, subtended by an angle of 83°50'. 11. Through how many radians does the minute hand of a clock turn in 24 minutes? a. 0.2π b. 0.4π c. 0.6π d. 0.8π 12. What is the radian measure of the angle formed by the hands of a clock at 2:00 p.m.? a. b. c. d. π 2 π 3 π 4 π 16. A wheel has a radius of 18 inches. Which distance, to the nearest inch, does the wheel travel when it 2π rotates through an angle of radians? 5 a. 45 b. 23 c. 13 d. 11 6 13. A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians? a. 2π b. 2 c. 8π d. 8 2 Name: ________________________ 17. The value of sin a. 1 2 b. − 7π is 6 x 21. If f(x) = sin , find f(π ) equals 4 a. 1 1 3 b. 2 1 2 c. 2 1 d. 2 1 2 3 2 c. d. ID: A 3 2 − 22. The value of cos ÁÊ π ˜ˆ 18. If f(x) = 2cos x, find f ÁÁÁÁ ˜˜˜˜ . Ë3¯ a. b. c. 19. What is the numerical value of the product ÊÁ ˆ˜ ÊÁ ˆ˜ ÁÁÁ tan π ˜˜˜ ÁÁÁ cos π ˜˜˜ ? Á 4 ˜¯ ÁË 3 ˜¯ Ë d. π 3 − sin 3π is 2 1 1 2 1 2 1 − 2 −1 1 2 1 3 x− . 2 2 Which equation defines the inverse of this function? a. y = 2x + 3 b. y = 2x − 3 3 c. y = 2x + 2 3 d. y = 2x − 2 23. A function is defined by the equation y = 20. The value of sin a. − b. 1 2 c. − d. 0 π 3 cos π is 3 2 1 2 3 Name: ________________________ ID: A 26. What is the inverse of the function y = 2x + 3? 1 3 a. x = y − 2 2 1 3 b. y = x − 2 2 c. y = 2x − 3 d. x = −2y − 3 24. The accompanying diagram shows the graph of the 1 line whose equation is y = − x + 2. On the same 3 set of axes, sketch the graph of the inverse of this function. State the coordinates of a point on the inverse function. 27. By what transformation can the set representing the inverse of a function be found? a. reflection in the origin b. reflection in the line y = x c. rotation of 90º about the origin d. reflection in the y-axis 28. For what values of x is the csc(x) undefined on 0 ≤ x < 360? 25. On the accompanying set of axes, graph the function f(x) = 2x + 4 and its inverse, f -1 (x). 29. For what values of x is the sec(x) undefined on 0 ≤ x < 360? 30. For what values of x is the tan(x) undefined on 0 ≤ x < 360? 31. For what values of x is the cot(x) undefined on 0 ≤ x < 360? 4 ID: A Trigonometry - Unit 2 Review Problem Set Answer Section 1. ANS: 197º40’. 3.45 × 180 π ≈ 197°40′. PTS: 2 KEY: degrees 2. ANS: B 11π 180 ⋅ = 165 12 π REF: fall0931a2 STA: A2.M.2 TOP: Radian Measure PTS: 2 KEY: degrees 3. ANS: A ÁÊ π ˜ˆ˜ ˜˜ = − 7π −420 ÁÁÁÁ ˜ 180 3 Ë ¯ REF: 061002a2 STA: A2.M.2 TOP: Radian Measure PTS: 2 KEY: radians 4. ANS: 180 2.5 ⋅ ≈ 143.2° REF: 081002a2 STA: A2.M.2 TOP: Radian Measure PTS: 2 KEY: degrees 5. ANS: A 180 360 2⋅ = REF: 011129a2 STA: A2.M.2 TOP: Radian Measure PTS: 2 KEY: degrees 6. ANS: ÊÁ π ˆ˜ ˜˜ ≈ 3.8 216 ÁÁÁÁ ˜˜ 180 Ë ¯ REF: 011220a2 STA: A2.M.2 TOP: Radian Measure REF: 061232a2 STA: A2.M.2 TOP: Radian Measure π π π PTS: 2 KEY: radians 1 ID: A 7. ANS: 3× 180 π ≈ 171.89° ≈ 171°53′. PTS: 2 KEY: degrees 8. ANS: B 8π 180 ⋅ = 288 5 π REF: 011335a2 STA: A2.M.2 TOP: Radian Measure PTS: 2 KEY: degrees 9. ANS: A 180 5⋅ ≈ 286 REF: 061302a2 STA: A2.M.2 TOP: Radian Measure PTS: 2 REF: 011427a2 KEY: degrees 10. ANS: C 5 10π 5π 2π ⋅ = = 12 12 6 STA: A2.M.2 TOP: Radian Measure PTS: 2 11. ANS: D REF: 061125a2 STA: A2.M.1 TOP: Radian Measure PTS: 2 12. ANS: B REF: 060120b STA: A2.M.1 TOP: Radian Measure PTS: 2 13. ANS: D s = θ r = 2⋅4 = 8 REF: 010615b STA: A2.M.1 TOP: Radian Measure REF: fall0922a2 KEY: arc length NAT: G.C.5 STA: A2.A.61 π PTS: 2 TOP: Arc Length 2 ID: A 14. ANS: C s=θr= 2π 3π ⋅6 = 8 2 PTS: 2 TOP: Arc Length 15. ANS: 83°50'⋅ π 180 REF: 061212a2 KEY: arc length NAT: G.C.5 2 REF: 011526a2 NAT: G.C.5 Arc Length KEY: arc length B PTS: 2 REF: 018732siii Determining Trigonometric Functions PTS: 2 REF: 088711siii KEY: radians, common angles 19. ANS: 1 2 PTS: KEY: 20. ANS: TOP: 21. ANS: TOP: 22. ANS: TOP: STA: A2.A.61 ≈ 1.463 radians s = θ r = 1.463 ⋅ 12 ≈ 17.6 PTS: 2 REF: 011435a2 TOP: Arc Length KEY: arc length 16. ANS: B 2π s=θr= ⋅ 18 ≈ 23 5 PTS: TOP: 17. ANS: TOP: 18. ANS: 1 NAT: G.C.5 STA: A2.A.56 2 REF: 068814siii STA: radians, common angles A PTS: 2 REF: Determining Trigonometric Functions C PTS: 2 REF: Determining Trigonometric Functions A PTS: 2 REF: Determining Trigonometric Functions STA: A2.A.61 STA: A2.A.61 STA: A2.A.56 KEY: radians, other angles TOP: Determining Trigonometric Functions A2.A.56 TOP: Determining Trigonometric Functions 088935siii STA: KEY: STA: KEY: STA: KEY: 019420siii 069531siii 3 A2.A.56 radians, common angles A2.A.56 radians, common angles A2.A.56 radians, common angles ID: A 23. ANS: A PTS: 2 KEY: equations 24. ANS: REF: 080319b STA: A2.A.44 TOP: Inverse of Functions REF: 010521b STA: A2.A.44 TOP: Inverse of Functions 2 REF: 080826b graphs B PTS: 2 Inverse of Functions B PTS: 2 Inverse of Functions STA: A2.A.44 TOP: Inverse of Functions REF: KEY: REF: KEY: STA: A2.A.44 . PTS: 2 KEY: graphs 25. ANS: PTS: KEY: 26. ANS: TOP: 27. ANS: TOP: 068635siii equations 018730siii graphs 4 STA: A2.A.44 ID: A 28. ANS: x = 0, 180 PTS: 1 29. ANS: x = 90, 270 STA: a2.a.64a PTS: 1 30. ANS: x = 90, 270 STA: a2.a.64a PTS: 1 31. ANS: x = 0, 180 STA: a2.a.64a PTS: 1 STA: a2.a.64a 5
© Copyright 2026 Paperzz