Lecture 6: Techniques of Integration III. Trig Substitution, part II: Intergrate the more general square root expressions √ ax2 + bx + c, b 6= 0 Complete the Square first: Z x √ dx ex. 1. 2 3 − 2x − x √ (− 3 − 2x − x2 − arcsin( x+1 2 ) + c) 1 Z ex. 2. x2 √ dx 2 4x − x√ √ 1 2 2 (6 arcsin( x−2 2 ) − 2 (x − 2) 4x − x − 4 4x − x + c) 2 ex. 3. Z p ( 92 [arcsin( x−2 3 )+ x−2 3 √ 5 + 4x − x2dx 5+4x−x2 ] 3 + c) 3 NYTI: Evaluate the following integrals Z 1 √ • dx (− + c) 2 2 x x +4 √ Z √ • Z • 9 − x2 dx 2 x √ (− x2 +4 4x 9−x2 x − arcsin( x3 ) + c) 1 dx (5 − 4x − x2)5/2 1 √ x+2 x+2 ( 81 ( 5−4x−x2 + 13 ( √5−4x−x )3 ) + c) 2 Z √ • 1 + x2 dx x √ √ 2 ( x2 + 1 + ln | xx+1 − x1 | + c) 4
© Copyright 2026 Paperzz