Calorimeter energy calibration using the energy conservation law

Abs Calibr
1
Calorimeter energy calibration
using the energy conservation law
V. Morgunov
DESY, Hamburg and ITEP, Moscow
LCWS2006, Bangalore, India, 2006.
The copy of this talk one can find at the http://www.desy.de/˜morgunov
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
2
How to get calorimeter energy conversion coeffs?
Easy:
One should run muons in Monte–Carlo, take whole energy in absorber and scintillator, and divide it by energy in
the scintillator.
The reason for this is: if one particle crosses one sampling layer it should deposit the whole energy,
but we can measure the scintillator energy only.
But: the cascade in matter consists of not only pure particles (track–like) but rather dense electromagnetic
showers and a mixture of the photoeffect’s and compton scattered electrons together with pure track–like energy
deposition.
This leads to the co–called e/π ratio for the calorimeter response for different types of particles.
The using of the complex calorimeter, which we have in LDC detector, leads to even more tricky procedure for the
calibration, because it needs to define the coeffs for each part of the calorimeter with different samplings and then
choose the correct ratio between that coeffs to get a correct whole measured energy.
So, let us start from the coeffs defined by muon run in the simulation.
C = Ewhole /Evisible
for each sampling structures, that are three of them in our case.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
3
How to get a whole event energy conservation?
Hcal energy (GeV)
Old coeffs for t tbar to 6 jets, 500 GeV
600
The simple formula should give us an answer
EEcal + EHcal = ECM
500
but, we have no this – see a picture.
400
So, let us “rotate” the black line to the position
of the red one by rescaling the coefficient of
300
energy conversion (see previous slide).
“Rotation” actually means of the affine transformation of this 2–D space. (see next slide)
200
These “rotated” coeffs consist of all the
100
“properties” of the whole LDC calorimeters as
well as the flavor’s containment of the jets!
0
0
100
200
300
400
E-ECAL vs E-HCAL
Vasiliy Morgunov
500
600
Ecal energy (GeV)
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
4
How to “rotate”?
The black line equation is:
a0 EEcal + EHcal = a0 (c1 Evis1 + c2 Evis2 ) + c3 Hvis = E0
where: c1 , c2 and c3 is an initial energy conversion coeffs, a0 is the slope which give us the minimal energy width.
E0 is some constant – the line should come through the most probable value of the initial energy sum.
By the way; if the initial coeffs were bad fitted to the intrinsic mutual calorimeter properties (bad inter–calibration),
one will never get the sharp top right edge of the energy distribution as well as the most probable “line”!
The red line equation is:
calib
calib
EECAL
+ EHCAL
= ECM – energy conservation law.
Let us require E0
= ECM and a0 = 1 exactly.
Then we got the new coeffs:
ccalib
= f a0 c1 , ccalib
= f a0 c2 and ccalib
= f c3 ;
1
2
3
where:
f = ECM /E0 ; and
ccalib
Evis1 + ccalib
Evis2 + ccalib
Hvis = ECM
1
2
3
along the most probable line
These three coeffs will be applied latter on to each hit in the particular sampling regions of the calorimeter.
For any events you will see below.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
5
800
600
400
200
0
0
200
400
600
450
400
300
250
250
200
200
150
150
100
100
50
50
50
100
150
600
400
200
200
400
600
E-ECAL vs E-HCAL
Vasiliy Morgunov
250
300
350
0
400
450
500
Ecal energy (GeV)
0
50
100
150
800
1000
Ecal energy (GeV)
New coeffs for W+ W- to everything, 500 GeV
500
450
400
300
250
250
200
200
150
150
100
100
50
50
100
150
200
250
300
E-ECAL vs E-HCAL
350
400
450
500
Ecal energy (GeV)
400
300
50
300
450
350
0
250
350
400
450
500
Ecal energy (GeV)
New coeffs for e+ e- to light quarks, 500 GeV
500
350
0
200
E-ECAL vs E-HCAL
Hcal energy (GeV)
Hcal energy (GeV)
Hcal energy (GeV)
New coeffs for W+ W- to everything, 1000 GeV
0
200
E-ECAL vs E-HCAL
800
0
400
300
E-ECAL vs E-HCAL
1000
450
350
0
New coeffs for e+ e- to heavy quarks, 500 GeV
500
350
0
800
1000
Ecal energy (GeV)
New coeffs for t tbar to 6 jets, 500 GeV
500
Hcal energy (GeV)
New coeffs for t tbar to 6 jets, 1000 GeV
1000
Hcal energy (GeV)
Hcal energy (GeV)
The results of “rotation/rescaling” are
0
0
50
100
150
200
250
300
350
400
450
500
Ecal energy (GeV)
E-ECAL vs E-HCAL
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
6
Calorimeter energy sum
New coeffs for t tbar to 6 jets, 1000 GeV
Constant
Mean
Sigma
120
105.8
982.5
24.64
New coeffs for t tbar to 6 jets, 500 GeV
Constant
Mean
Sigma
140
111.9
488.8
16.90
New coeffs for e+ e- to heavy quarks, 500 GeV
Constant
Mean
Sigma
140
104.5
495.0
14.78
120
120
100
100
100
80
80
80
60
60
60
40
20
0
0
200
400
600
800
1000
1200
GeV
40
40
20
20
0
0
100
200
Calorimeter hit energy sum
400
500
600
700
GeV
0
0
100
200
Calorimeter hit energy sum
New coeffs for W+ W- to everything, 1000 GeV
Constant
Mean
Sigma
70
300
64.38
992.6
25.47
New coeffs for W+ W- to everything, 500 GeV
Constant
Mean
Sigma
80
300
400
500
600
700
GeV
Calorimeter hit energy sum
71.89
496.6
14.52
70
New coeffs for e+ e- to light quarks, 500 GeV
Constant
Mean
Sigma
160
139.9
497.9
14.90
140
60
60
120
50
50
100
40
80
30
60
20
40
10
20
40
30
20
10
0
0
200
400
600
800
Calorimeter hit energy sum
Vasiliy Morgunov
1000
1200
GeV
0
0
100
200
300
400
Calorimeter hit energy sum
500
600
700
GeV
0
0
100
200
300
400
500
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
7
about Available Energy
Events for all these plots were generated without luminosity curve and without ISR,
so, the whole sum of energy in HEP record is equal of the center mass energy exactly.
To calculate available energy for calorimeters one should subtract
the neutrino energies, as well as the
energy of particles which go to the “beam–tube” (acceptance – detector inefficiency); and also subtract
the muons energies
but with leaving of the energy which deposited by any muon in the calorimeter, which is about 1.6 GeV per muon.
So, the estimated energy to be measured by calorimeters for each event is:
Eavailable = ECM − Eneutrinos − Eto tube − Emuons + Nmuons × 1.6 GeV
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
8
Check plots
Check quality, t tbar to 6 jets, 1000 GeV
Constant
Mean
Sigma
120
103.0
0.1879
18.69
Check quality, t tbar to 6 jets, 500 GeV
Constant
Mean
Sigma
100
Check quality, e+ e- to heavy quarks, 500 GeV
Constant
Mean
Sigma
87.81
1.022
12.62
79.47
-0.4959
12.84
100
100
80
80
80
60
60
60
40
40
40
20
20
0
-100
-75
-50
-25
0
25
50
75
100
GeV
0
20
-60
-40
Calorimeter energy - Available
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, W+ W- to everything, 1000 GeV
Constant
Mean
Sigma
180
-20
110.8
2.684
17.37
160
Check quality, W+ W- to everything, 500 GeV
Constant
Mean
Sigma
140
-20
0
20
40
60
GeV
Calorimeter energy - Available
106.7
3.160
8.934
120
Check quality, e+ e- to light quarks, 500 GeV
Constant
Mean
Sigma
90
80
72.04
-1.073
14.14
70
140
100
60
120
80
100
80
50
40
60
30
60
40
20
40
20
10
20
0
-100
-75
-50
-25
0
25
50
Calorimeter energy - Available
Vasiliy Morgunov
75
100
GeV
0
-60
-40
-20
0
20
Calorimeter energy - Available
40
60
GeV
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
9
For “reference” Z–pole reaction
Hcal energy (GeV)
Z to everything, 91.2 GeV
Z to everything, 91.2 GeV
Constant
Mean
Sigma
180
100
160
152.3
90.44
4.670
140
80
120
60
100
80
40
60
40
20
20
0
0
20
40
60
E-ECAL vs E-HCAL
80
100
Ecal energy (GeV)
0
0
20
40
60
80
100
120
Calorimeter hit energy sum
All decay channels are allowed.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
10
Check plot
Check quality, Z to everything, 91.2 GeV
Constant
Mean
Sigma
120
99.07
-0.5865E-01
4.247
Sigma = 44.5 %
100
80
60
40
20
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
11
Marlin Reco also knows about this
χ2 / ndf
Prob
Normalisation
Mean
Sigma Central Part
Sigma Left Tail
Sigma Right Tail
Fraction Central Part
LDC (tile HCal), 4T
400
350
300
139.8 / 63
1.517e-08
369.5
-0.08576
3.399
9.077
7.756
0.7956
250
200
150
100
50
0
-60
Vasiliy Morgunov
-40
-20
0
20
40
60
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
12
Summary Table, model LDC00
Whole calorimeter sum
e+ e- into , at energy
Check plots
Mean [GeV]
Sigma [GeV]
Mean [GeV]
Estimated energy resolution [GeV]
t tbar, 1000 GeV
982.3
24.6
0.19
18.7
W+ W-, 1000 GeV
992.6
25.5
2.7
17.4
t tbar, 500 GeV
488.8
16.9
1.8
12.6
W+ W-, 500 GeV
496.6
14.5
1.6
10.9
heavy quarks, 500 GeV
495.0
14.8
-0.5
12.8
light quarks, 500 GeV
497.9
14.9
-1.1
14.3
t tbar, 360 GeV
356.4
14.0
5.5
10.0
Z pole, 91.2 GeV
90.4
4.67
-0.06
4.25
Any reconstruction program should give us these resolutions, at least.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
13
Detector models comparison, 4 Tesla, W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
42.84
80
Constant
Mean
Sigma
70
/ 22
65.83
499.2
14.46
80
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
500
600
700
GeV
30.93
Constant
Mean
Sigma
0
0
100
200
300
400
Calorimeter hit energy sum
500
600
/ 22
68.17
503.1
15.31
700
GeV
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
14
Attempt of Optimization
Shift of the most probable peak of energy from the center of mass energy.
3 Tesla
LDC01
e+ e- into , at energy
4 Tesla
LDC00
LDC01
LDC00
-20 -20
+00 +00
+00 00
+20 +20
-20-20
+00 +00
+00 +00
+20 +20
W+ W-, 500 GeV
-3.4
-2.1
+3.1
+2.4
-0.8
-0.4
+4.2
+3.1
t tbar, 500 GeV
-6.9
-7.0
-3.1
-4.6
-6.2
-5.0
-1.9
-3.0
t tbar, 360 GeV
-6.7
-6.3
-3.6
-4.6
-5.8
-6.5
-3.2
-5.0
Tendency is visible, BUT, to make any decision on these numbers is too hard,
they are around one percent of whole energy.
All detector models are good from the point of view of the energy consistence
in the calorimeter.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
15
Conclusion
Let us use the energy conservation law
with its full power.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
16
After the conclusion
(ZEUS data)
For HERA experiments this feature also can be used but at the more complex way.
The relative calibration can be done using
Vasiliy Morgunov
E − Pz = 2 × Ee beam
equation.
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
17
Support slides
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
18
Hcal energy (GeV)
Once chosen coeffs work for any energy
New coeffs for t tbar to 6 jets, 1000 GeV
1000
New coeffs for t tbar to 6 jets, 1000 GeV
Constant
Mean
Sigma
120
800
105.8
982.5
24.64
100
80
600
60
400
40
200
20
0
0
200
400
600
E-ECAL vs E-HCAL
800
1000
Ecal energy (GeV)
0
0
200
400
600
800
Calorimeter hit energy sum
1000
1200
GeV
e+ e− → t t̄ → 6 jets, semileptonic decay channels for W ± were prohibited.
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
19
Let us check the result again
Check quality, t tbar to 6 jets, 1000 GeV
Constant
Mean
Sigma
120
103.0
0.1879
18.69
100
80
60
40
20
0
-100
-75
-50
-25
0
25
50
75
100
GeV
Calorimeter energy - Available
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
20
Hcal energy (GeV)
And any reactions
New coeffs for W+ W- to everything, 1000 GeV
1000
New coeffs for W+ W- to everything, 1000 GeV
Constant
Mean
Sigma
70
64.38
992.6
25.47
800
60
50
600
40
400
30
20
200
10
0
0
200
400
600
E-ECAL vs E-HCAL
800
1000
Ecal energy (GeV)
0
0
200
400
600
800
Calorimeter hit energy sum
1000
1200
GeV
e+ e− → W + W − , all decay channels for W ± are allowed.
HEP record has cut:
Vasiliy Morgunov
Cos(W ) < 0.9
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
21
And again, let us check the result
Check quality, W+ W- to everything, 1000 GeV
Constant
Mean
Sigma
180
110.8
2.684
17.37
160
140
120
100
80
60
40
20
0
-100
-75
-50
-25
0
25
50
75
100
GeV
Calorimeter energy - Available
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
22
Hcal energy (GeV)
As for light quarks
New coeffs for e+ e- to light quarks, 500 GeV
500
450
160
400
140
350
New coeffs for e+ e- to light quarks, 500 GeV
Constant
Mean
Sigma
139.9
497.9
14.90
120
300
100
250
80
200
60
150
40
100
20
50
0
0
50
100
150
200
250
300
E-ECAL vs E-HCAL
Vasiliy Morgunov
350
400
450
500
Ecal energy (GeV)
0
0
100
200
300
400
Calorimeter hit energy sum
500
600
700
GeV
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
23
Let us check the result
Check quality, e+ e- to light quarks, 500 GeV
Constant
Mean
Sigma
90
80
72.04
-1.073
14.14
70
60
50
40
30
20
10
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
24
Hcal energy (GeV)
As for heavy quarks
New coeffs for e+ e- to heavy quarks, 500 GeV
500
New coeffs for e+ e- to heavy quarks, 500 GeV
Constant
Mean
Sigma
140
450
104.5
495.0
14.78
120
400
350
100
300
80
250
200
60
150
40
100
20
50
0
0
50
100
150
200
250
300
E-ECAL vs E-HCAL
Vasiliy Morgunov
350
400
450
500
Ecal energy (GeV)
0
0
100
200
300
400
Calorimeter hit energy sum
500
600
700
GeV
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
25
Let us check the result
Check quality, e+ e- to heavy quarks, 500 GeV
Constant
Mean
Sigma
79.47
-0.4959
12.84
100
80
60
40
20
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
Vasiliy Morgunov
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
26
Detector models comparison, 4 Tesla, W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
80
Constant
Mean
Sigma
70
42.84 / 22
65.83
499.2
14.46
80
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
100
200
300
400
500
600
700
GeV
Constant
Mean
Sigma
0
0
100
200
Calorimeter hit energy sum
400
500
600
700
GeV
Calorimeter hit energy sum
e+ e- to W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
Constant
Mean
Sigma
80
300
23.97 / 22
64.97
499.6
15.24
15.95 / 22
71.05
504.2
14.93
80
Constant
Mean
Sigma
70
30.93 / 22
68.17
503.1
15.31
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
500
600
700
GeV
0
0
100
200
300
400
500
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
27
Detector models comparison, 3 Tesla, W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
e+ e- to W+ W-, 500 GeV
Constant
Mean
Sigma
80
22.26 / 22
67.63
496.6
14.36
90
Constant
Mean
Sigma
80
21.10 / 22
68.26
497.9
14.44
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
100
200
300
400
500
600
700
GeV
0
0
100
200
Calorimeter hit energy sum
e+ e- to W+ W-, 500 GeV
100
300
400
500
600
700
GeV
Calorimeter hit energy sum
e+ e- to W+ W-, 500 GeV
Constant
Mean
Sigma
28.51 / 22
70.15
503.1
14.60
Constant
Mean
Sigma
80
33.74 / 22
68.24
502.4
15.08
70
80
60
60
50
40
40
30
20
20
10
0
0
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
500
600
700
GeV
0
0
100
200
300
400
500
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
28
Detector models comparison, 4 Tesla, t tbar, 500 GeV
e+ e- to t tbar, 500 GeV
e+ e- to t tbar, 500 GeV
120
Constant
Mean
Sigma
24.83 / 22
108.6
493.8
15.49
Constant
Mean
Sigma
120
38.30 / 22
107.8
495.0
14.83
100
100
80
80
60
60
40
40
20
0
20
0
100
200
300
400
500
600
700
GeV
0
0
100
200
Calorimeter hit energy sum
e+ e- to t tbar, 500 GeV
400
500
600
700
GeV
e+ e- to t tbar, 500 GeV
Constant
Mean
Sigma
120
300
Calorimeter hit energy sum
14.80 / 22
109.8
498.1
15.99
120
Constant
Mean
Sigma
36.91 / 22
107.7
497.0
15.97
100
100
80
80
60
60
40
40
20
20
0
0
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
500
600
700
GeV
0
0
100
200
300
400
500
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
29
Detector models comparison, 3 Tesla, t tbar, 500 GeV
e+ e- to t tbar, 500 GeV
e+ e- to t tbar, 500 GeV
Constant
Mean
Sigma
120
28.93 / 22
103.0
493.1
15.73
Constant
Mean
Sigma
120
22.52 / 22
112.1
493.0
15.04
100
100
80
80
60
60
40
40
20
0
20
0
100
200
300
400
500
600
700
GeV
0
0
100
200
Calorimeter hit energy sum
e+ e- to t tbar, 500 GeV
400
500
600
700
GeV
e+ e- to t tbar, 500 GeV
140
Constant
Mean
Sigma
120
300
Calorimeter hit energy sum
21.40 / 22
114.7
496.9
15.14
Constant
Mean
Sigma
120
33.59 / 22
110.4
495.4
16.25
100
100
80
80
60
60
40
40
20
20
0
0
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
500
600
700
GeV
0
0
100
200
300
400
500
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
30
Detector models comparison, 4 Tesla, t tbar, 360 GeV
e+ e- to t tbar, 360 GeV
e+ e- to t tbar, 360 GeV
Constant
Mean
Sigma
140
15.59 / 18
136.1
354.2
13.38
120
160
140
100
80
80
60
60
40
40
20
20
0
100
200
300
400
500
600
700
GeV
0
0
100
200
Calorimeter hit energy sum
160
140
120
120
100
100
80
80
60
60
40
40
20
20
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
17.19 / 18
141.9
356.8
13.07
140
0
400
500
600
700
GeV
e+ e- to t tbar, 360 GeV
Constant
Mean
Sigma
160
300
Calorimeter hit energy sum
e+ e- to t tbar, 360 GeV
0
26.58 / 18
139.5
353.5
13.04
120
100
0
Constant
Mean
Sigma
500
600
700
GeV
0
Constant
Mean
Sigma
0
100
200
300
400
500
23.59 / 18
137.8
355.0
13.69
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
31
Detector models comparison, 3 Tesla, t tbar, 360 GeV
e+ e- to t tbar, 360 GeV
e+ e- to t tbar, 360 GeV
160
Constant
Mean
Sigma
140
13.76 / 18
135.5
353.3
13.37
160
140
120
120
100
100
80
80
60
60
40
40
20
20
0
0
100
200
300
400
500
600
700
GeV
Constant
Mean
Sigma
0
0
100
200
Calorimeter hit energy sum
500
600
700
GeV
e+ e- to t tbar, 500 GeV
Constant
Mean
Sigma
140
400
Calorimeter hit energy sum
e+ e- to t tbar, 360 GeV
160
300
16.35 / 18
140.2
353.7
12.87
27.66 / 18
137.5
356.4
14.03
Constant
Mean
Sigma
120
33.59 / 22
110.4
495.4
16.25
100
120
80
100
80
60
60
40
40
20
20
0
0
100
200
300
400
Calorimeter hit energy sum
Vasiliy Morgunov
500
600
700
GeV
0
0
100
200
300
400
500
600
700
GeV
Calorimeter hit energy sum
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
32
Detector models comparison, 4 Tesla, W+ W-, 500 GeV
Check quality, e+ e- to W+ W-, 500 GeV
Constant
Mean
Sigma
250
Check quality, e+ e- to W+ W-, 500 GeV
37.14 / 14
199.8
2.904
10.18
250
Constant
Mean
Sigma
31.00 / 14
201.6
3.209
9.916
200
200
150
150
100
100
50
50
0
-60
-40
-20
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, e+ e- to W+ W-, 500 GeV
225
Constant
Mean
Sigma
200
-20
0
20
40
60
GeV
Calorimeter energy - Available
Check quality, e+ e- to W+ W-, 500 GeV
19.52 / 14
200.8
7.201
10.48
250
Constant
Mean
Sigma
31.17 / 14
203.9
7.300
9.854
200
175
150
150
125
100
100
75
50
50
25
0
-60
-40
-20
0
20
Calorimeter energy - Available
Vasiliy Morgunov
40
60
GeV
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
33
Detector models comparison, 3 Tesla, W+ W-, 500 GeV
Check quality, e+ e- to W+ W-, 500 GeV
250
Constant
Mean
Sigma
Check quality, e+ e- to W+ W-, 500 GeV
30.15 / 14
204.5
0.1082
10.12
Constant
Mean
Sigma
250
30.64 / 14
206.0
1.275
9.828
200
200
150
150
100
100
50
0
50
-60
-40
-20
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, e+ e- to W+ W-, 500 GeV
Constant
Mean
Sigma
250
-20
0
20
40
60
GeV
Calorimeter energy - Available
Check quality, e+ e- to W+ W-, 500 GeV
21.56 / 14
215.8
6.080
9.376
Constant
Mean
Sigma
250
29.17 / 14
213.5
5.985
9.444
200
200
150
150
100
100
50
0
50
-60
-40
-20
0
20
Calorimeter energy - Available
Vasiliy Morgunov
40
60
GeV
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
34
Detector models comparison, 4 Tesla, t tbar, 500 GeV
Check quality, e+ e- to t tbar, 500 GeV
200
Constant
Mean
Sigma
175
Check quality, e+ e- to t tbar, 500 GeV
18.03 / 14
174.4
2.721
12.35
200
Constant
Mean
Sigma
175
12.55 / 14
177.3
4.180
11.88
150
150
125
125
100
100
75
75
50
50
25
25
0
-60
-40
-20
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, e+ e- to t tbar, 500 GeV
200
Constant
Mean
Sigma
175
-20
0
20
40
60
GeV
Calorimeter energy - Available
Check quality, e+ e- to t tbar, 500 GeV
11.63 / 14
171.9
7.964
13.19
Constant
Mean
Sigma
200
19.39 / 14
174.4
6.747
12.21
175
150
150
125
125
100
100
75
75
50
50
25
0
25
-60
-40
-20
0
20
Calorimeter energy - Available
Vasiliy Morgunov
40
60
GeV
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
35
Detector models comparison, 3 Tesla, t tbar, 500 GeV
Check quality, e+ e- to t tbar, 500 GeV
Constant
Mean
Sigma
200
Check quality, e+ e- to t tbar, 500 GeV
17.41 / 14
168.9
2.417
12.08
225
Constant
Mean
Sigma
200
15.81 / 14
174.2
2.044
12.77
175
175
150
150
125
125
100
100
75
75
50
50
25
25
0
-60
-40
-20
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, e+ e- to t tbar, 500 GeV
Constant
Mean
Sigma
200
20
40
60
GeV
Constant
Mean
Sigma
200
12.77 / 14
182.3
5.967
11.41
175
150
150
125
125
100
100
75
75
50
50
25
25
-60
-40
-20
0
20
Calorimeter energy - Available
Vasiliy Morgunov
0
Check quality, e+ e- to t tbar, 500 GeV
12.20 / 14
184.0
6.526
11.62
175
0
-20
Calorimeter energy - Available
40
60
GeV
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
36
Detector models comparison, 4 Tesla, t tbar, 360 GeV
Check quality, e+ e- to t tbar, 360 GeV
250
Constant
Mean
Sigma
225
Check quality, e+ e- to t tbar, 360 GeV
13.21 / 18
217.7
3.138
10.54
250
Constant
Mean
Sigma
19.91 / 18
218.2
2.805
10.40
200
200
175
150
150
125
100
100
75
50
50
25
0
-60
-40
-20
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, e+ e- to t tbar, 360 GeV
250
Constant
Mean
Sigma
150
100
100
50
50
-20
0
20
Calorimeter energy - Available
Vasiliy Morgunov
Constant
Mean
Sigma
150
-40
20
250
200
-60
0
40
60
GeV
Check quality, e+ e- to t tbar, 360 GeV
28.36 / 18
224.0
5.503
10.02
200
0
-20
Calorimeter energy - Available
40
60
GeV
0
-60
-40
-20
0
20
21.95 / 18
216.7
4.654
10.44
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006
Abs Calibr
37
Detector models comparison, 3 Tesla, t tbar, 360 GeV
Check quality, e+ e- to t tbar, 360 GeV
250
Constant
Mean
Sigma
Check quality, e+ e- to t tbar, 360 GeV
11.84 / 18
219.5
2.244
10.36
Constant
Mean
Sigma
225
15.37 / 18
215.0
2.289
10.73
200
200
175
150
150
125
100
100
75
50
50
25
0
-60
-40
-20
0
20
40
60
GeV
0
-60
-40
Calorimeter energy - Available
Check quality, e+ e- to t tbar, 360 GeV
Constant
Mean
Sigma
250
-20
0
20
40
60
GeV
Calorimeter energy - Available
Check quality, e+ e- to t tbar, 500 GeV
16.26 / 18
218.0
5.952
10.50
Constant
Mean
Sigma
200
12.77 / 14
182.3
5.967
11.41
175
200
150
125
150
100
100
75
50
50
25
0
-60
-40
-20
0
20
Calorimeter energy - Available
Vasiliy Morgunov
40
60
GeV
0
-60
-40
-20
0
20
40
60
GeV
Calorimeter energy - Available
LCWS2006, Bangalore, India, 9-13 March 2006