Abs Calibr 1 Calorimeter energy calibration using the energy conservation law V. Morgunov DESY, Hamburg and ITEP, Moscow LCWS2006, Bangalore, India, 2006. The copy of this talk one can find at the http://www.desy.de/˜morgunov Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 2 How to get calorimeter energy conversion coeffs? Easy: One should run muons in Monte–Carlo, take whole energy in absorber and scintillator, and divide it by energy in the scintillator. The reason for this is: if one particle crosses one sampling layer it should deposit the whole energy, but we can measure the scintillator energy only. But: the cascade in matter consists of not only pure particles (track–like) but rather dense electromagnetic showers and a mixture of the photoeffect’s and compton scattered electrons together with pure track–like energy deposition. This leads to the co–called e/π ratio for the calorimeter response for different types of particles. The using of the complex calorimeter, which we have in LDC detector, leads to even more tricky procedure for the calibration, because it needs to define the coeffs for each part of the calorimeter with different samplings and then choose the correct ratio between that coeffs to get a correct whole measured energy. So, let us start from the coeffs defined by muon run in the simulation. C = Ewhole /Evisible for each sampling structures, that are three of them in our case. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 3 How to get a whole event energy conservation? Hcal energy (GeV) Old coeffs for t tbar to 6 jets, 500 GeV 600 The simple formula should give us an answer EEcal + EHcal = ECM 500 but, we have no this – see a picture. 400 So, let us “rotate” the black line to the position of the red one by rescaling the coefficient of 300 energy conversion (see previous slide). “Rotation” actually means of the affine transformation of this 2–D space. (see next slide) 200 These “rotated” coeffs consist of all the 100 “properties” of the whole LDC calorimeters as well as the flavor’s containment of the jets! 0 0 100 200 300 400 E-ECAL vs E-HCAL Vasiliy Morgunov 500 600 Ecal energy (GeV) LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 4 How to “rotate”? The black line equation is: a0 EEcal + EHcal = a0 (c1 Evis1 + c2 Evis2 ) + c3 Hvis = E0 where: c1 , c2 and c3 is an initial energy conversion coeffs, a0 is the slope which give us the minimal energy width. E0 is some constant – the line should come through the most probable value of the initial energy sum. By the way; if the initial coeffs were bad fitted to the intrinsic mutual calorimeter properties (bad inter–calibration), one will never get the sharp top right edge of the energy distribution as well as the most probable “line”! The red line equation is: calib calib EECAL + EHCAL = ECM – energy conservation law. Let us require E0 = ECM and a0 = 1 exactly. Then we got the new coeffs: ccalib = f a0 c1 , ccalib = f a0 c2 and ccalib = f c3 ; 1 2 3 where: f = ECM /E0 ; and ccalib Evis1 + ccalib Evis2 + ccalib Hvis = ECM 1 2 3 along the most probable line These three coeffs will be applied latter on to each hit in the particular sampling regions of the calorimeter. For any events you will see below. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 5 800 600 400 200 0 0 200 400 600 450 400 300 250 250 200 200 150 150 100 100 50 50 50 100 150 600 400 200 200 400 600 E-ECAL vs E-HCAL Vasiliy Morgunov 250 300 350 0 400 450 500 Ecal energy (GeV) 0 50 100 150 800 1000 Ecal energy (GeV) New coeffs for W+ W- to everything, 500 GeV 500 450 400 300 250 250 200 200 150 150 100 100 50 50 100 150 200 250 300 E-ECAL vs E-HCAL 350 400 450 500 Ecal energy (GeV) 400 300 50 300 450 350 0 250 350 400 450 500 Ecal energy (GeV) New coeffs for e+ e- to light quarks, 500 GeV 500 350 0 200 E-ECAL vs E-HCAL Hcal energy (GeV) Hcal energy (GeV) Hcal energy (GeV) New coeffs for W+ W- to everything, 1000 GeV 0 200 E-ECAL vs E-HCAL 800 0 400 300 E-ECAL vs E-HCAL 1000 450 350 0 New coeffs for e+ e- to heavy quarks, 500 GeV 500 350 0 800 1000 Ecal energy (GeV) New coeffs for t tbar to 6 jets, 500 GeV 500 Hcal energy (GeV) New coeffs for t tbar to 6 jets, 1000 GeV 1000 Hcal energy (GeV) Hcal energy (GeV) The results of “rotation/rescaling” are 0 0 50 100 150 200 250 300 350 400 450 500 Ecal energy (GeV) E-ECAL vs E-HCAL LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 6 Calorimeter energy sum New coeffs for t tbar to 6 jets, 1000 GeV Constant Mean Sigma 120 105.8 982.5 24.64 New coeffs for t tbar to 6 jets, 500 GeV Constant Mean Sigma 140 111.9 488.8 16.90 New coeffs for e+ e- to heavy quarks, 500 GeV Constant Mean Sigma 140 104.5 495.0 14.78 120 120 100 100 100 80 80 80 60 60 60 40 20 0 0 200 400 600 800 1000 1200 GeV 40 40 20 20 0 0 100 200 Calorimeter hit energy sum 400 500 600 700 GeV 0 0 100 200 Calorimeter hit energy sum New coeffs for W+ W- to everything, 1000 GeV Constant Mean Sigma 70 300 64.38 992.6 25.47 New coeffs for W+ W- to everything, 500 GeV Constant Mean Sigma 80 300 400 500 600 700 GeV Calorimeter hit energy sum 71.89 496.6 14.52 70 New coeffs for e+ e- to light quarks, 500 GeV Constant Mean Sigma 160 139.9 497.9 14.90 140 60 60 120 50 50 100 40 80 30 60 20 40 10 20 40 30 20 10 0 0 200 400 600 800 Calorimeter hit energy sum Vasiliy Morgunov 1000 1200 GeV 0 0 100 200 300 400 Calorimeter hit energy sum 500 600 700 GeV 0 0 100 200 300 400 500 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 7 about Available Energy Events for all these plots were generated without luminosity curve and without ISR, so, the whole sum of energy in HEP record is equal of the center mass energy exactly. To calculate available energy for calorimeters one should subtract the neutrino energies, as well as the energy of particles which go to the “beam–tube” (acceptance – detector inefficiency); and also subtract the muons energies but with leaving of the energy which deposited by any muon in the calorimeter, which is about 1.6 GeV per muon. So, the estimated energy to be measured by calorimeters for each event is: Eavailable = ECM − Eneutrinos − Eto tube − Emuons + Nmuons × 1.6 GeV Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 8 Check plots Check quality, t tbar to 6 jets, 1000 GeV Constant Mean Sigma 120 103.0 0.1879 18.69 Check quality, t tbar to 6 jets, 500 GeV Constant Mean Sigma 100 Check quality, e+ e- to heavy quarks, 500 GeV Constant Mean Sigma 87.81 1.022 12.62 79.47 -0.4959 12.84 100 100 80 80 80 60 60 60 40 40 40 20 20 0 -100 -75 -50 -25 0 25 50 75 100 GeV 0 20 -60 -40 Calorimeter energy - Available 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, W+ W- to everything, 1000 GeV Constant Mean Sigma 180 -20 110.8 2.684 17.37 160 Check quality, W+ W- to everything, 500 GeV Constant Mean Sigma 140 -20 0 20 40 60 GeV Calorimeter energy - Available 106.7 3.160 8.934 120 Check quality, e+ e- to light quarks, 500 GeV Constant Mean Sigma 90 80 72.04 -1.073 14.14 70 140 100 60 120 80 100 80 50 40 60 30 60 40 20 40 20 10 20 0 -100 -75 -50 -25 0 25 50 Calorimeter energy - Available Vasiliy Morgunov 75 100 GeV 0 -60 -40 -20 0 20 Calorimeter energy - Available 40 60 GeV 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 9 For “reference” Z–pole reaction Hcal energy (GeV) Z to everything, 91.2 GeV Z to everything, 91.2 GeV Constant Mean Sigma 180 100 160 152.3 90.44 4.670 140 80 120 60 100 80 40 60 40 20 20 0 0 20 40 60 E-ECAL vs E-HCAL 80 100 Ecal energy (GeV) 0 0 20 40 60 80 100 120 Calorimeter hit energy sum All decay channels are allowed. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 10 Check plot Check quality, Z to everything, 91.2 GeV Constant Mean Sigma 120 99.07 -0.5865E-01 4.247 Sigma = 44.5 % 100 80 60 40 20 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 11 Marlin Reco also knows about this χ2 / ndf Prob Normalisation Mean Sigma Central Part Sigma Left Tail Sigma Right Tail Fraction Central Part LDC (tile HCal), 4T 400 350 300 139.8 / 63 1.517e-08 369.5 -0.08576 3.399 9.077 7.756 0.7956 250 200 150 100 50 0 -60 Vasiliy Morgunov -40 -20 0 20 40 60 LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 12 Summary Table, model LDC00 Whole calorimeter sum e+ e- into , at energy Check plots Mean [GeV] Sigma [GeV] Mean [GeV] Estimated energy resolution [GeV] t tbar, 1000 GeV 982.3 24.6 0.19 18.7 W+ W-, 1000 GeV 992.6 25.5 2.7 17.4 t tbar, 500 GeV 488.8 16.9 1.8 12.6 W+ W-, 500 GeV 496.6 14.5 1.6 10.9 heavy quarks, 500 GeV 495.0 14.8 -0.5 12.8 light quarks, 500 GeV 497.9 14.9 -1.1 14.3 t tbar, 360 GeV 356.4 14.0 5.5 10.0 Z pole, 91.2 GeV 90.4 4.67 -0.06 4.25 Any reconstruction program should give us these resolutions, at least. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 13 Detector models comparison, 4 Tesla, W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV 42.84 80 Constant Mean Sigma 70 / 22 65.83 499.2 14.46 80 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 500 600 700 GeV 30.93 Constant Mean Sigma 0 0 100 200 300 400 Calorimeter hit energy sum 500 600 / 22 68.17 503.1 15.31 700 GeV LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 14 Attempt of Optimization Shift of the most probable peak of energy from the center of mass energy. 3 Tesla LDC01 e+ e- into , at energy 4 Tesla LDC00 LDC01 LDC00 -20 -20 +00 +00 +00 00 +20 +20 -20-20 +00 +00 +00 +00 +20 +20 W+ W-, 500 GeV -3.4 -2.1 +3.1 +2.4 -0.8 -0.4 +4.2 +3.1 t tbar, 500 GeV -6.9 -7.0 -3.1 -4.6 -6.2 -5.0 -1.9 -3.0 t tbar, 360 GeV -6.7 -6.3 -3.6 -4.6 -5.8 -6.5 -3.2 -5.0 Tendency is visible, BUT, to make any decision on these numbers is too hard, they are around one percent of whole energy. All detector models are good from the point of view of the energy consistence in the calorimeter. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 15 Conclusion Let us use the energy conservation law with its full power. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 16 After the conclusion (ZEUS data) For HERA experiments this feature also can be used but at the more complex way. The relative calibration can be done using Vasiliy Morgunov E − Pz = 2 × Ee beam equation. LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 17 Support slides Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 18 Hcal energy (GeV) Once chosen coeffs work for any energy New coeffs for t tbar to 6 jets, 1000 GeV 1000 New coeffs for t tbar to 6 jets, 1000 GeV Constant Mean Sigma 120 800 105.8 982.5 24.64 100 80 600 60 400 40 200 20 0 0 200 400 600 E-ECAL vs E-HCAL 800 1000 Ecal energy (GeV) 0 0 200 400 600 800 Calorimeter hit energy sum 1000 1200 GeV e+ e− → t t̄ → 6 jets, semileptonic decay channels for W ± were prohibited. Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 19 Let us check the result again Check quality, t tbar to 6 jets, 1000 GeV Constant Mean Sigma 120 103.0 0.1879 18.69 100 80 60 40 20 0 -100 -75 -50 -25 0 25 50 75 100 GeV Calorimeter energy - Available Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 20 Hcal energy (GeV) And any reactions New coeffs for W+ W- to everything, 1000 GeV 1000 New coeffs for W+ W- to everything, 1000 GeV Constant Mean Sigma 70 64.38 992.6 25.47 800 60 50 600 40 400 30 20 200 10 0 0 200 400 600 E-ECAL vs E-HCAL 800 1000 Ecal energy (GeV) 0 0 200 400 600 800 Calorimeter hit energy sum 1000 1200 GeV e+ e− → W + W − , all decay channels for W ± are allowed. HEP record has cut: Vasiliy Morgunov Cos(W ) < 0.9 LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 21 And again, let us check the result Check quality, W+ W- to everything, 1000 GeV Constant Mean Sigma 180 110.8 2.684 17.37 160 140 120 100 80 60 40 20 0 -100 -75 -50 -25 0 25 50 75 100 GeV Calorimeter energy - Available Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 22 Hcal energy (GeV) As for light quarks New coeffs for e+ e- to light quarks, 500 GeV 500 450 160 400 140 350 New coeffs for e+ e- to light quarks, 500 GeV Constant Mean Sigma 139.9 497.9 14.90 120 300 100 250 80 200 60 150 40 100 20 50 0 0 50 100 150 200 250 300 E-ECAL vs E-HCAL Vasiliy Morgunov 350 400 450 500 Ecal energy (GeV) 0 0 100 200 300 400 Calorimeter hit energy sum 500 600 700 GeV LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 23 Let us check the result Check quality, e+ e- to light quarks, 500 GeV Constant Mean Sigma 90 80 72.04 -1.073 14.14 70 60 50 40 30 20 10 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 24 Hcal energy (GeV) As for heavy quarks New coeffs for e+ e- to heavy quarks, 500 GeV 500 New coeffs for e+ e- to heavy quarks, 500 GeV Constant Mean Sigma 140 450 104.5 495.0 14.78 120 400 350 100 300 80 250 200 60 150 40 100 20 50 0 0 50 100 150 200 250 300 E-ECAL vs E-HCAL Vasiliy Morgunov 350 400 450 500 Ecal energy (GeV) 0 0 100 200 300 400 Calorimeter hit energy sum 500 600 700 GeV LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 25 Let us check the result Check quality, e+ e- to heavy quarks, 500 GeV Constant Mean Sigma 79.47 -0.4959 12.84 100 80 60 40 20 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available Vasiliy Morgunov LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 26 Detector models comparison, 4 Tesla, W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV 80 Constant Mean Sigma 70 42.84 / 22 65.83 499.2 14.46 80 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 100 200 300 400 500 600 700 GeV Constant Mean Sigma 0 0 100 200 Calorimeter hit energy sum 400 500 600 700 GeV Calorimeter hit energy sum e+ e- to W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV Constant Mean Sigma 80 300 23.97 / 22 64.97 499.6 15.24 15.95 / 22 71.05 504.2 14.93 80 Constant Mean Sigma 70 30.93 / 22 68.17 503.1 15.31 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 500 600 700 GeV 0 0 100 200 300 400 500 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 27 Detector models comparison, 3 Tesla, W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV e+ e- to W+ W-, 500 GeV Constant Mean Sigma 80 22.26 / 22 67.63 496.6 14.36 90 Constant Mean Sigma 80 21.10 / 22 68.26 497.9 14.44 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 100 200 300 400 500 600 700 GeV 0 0 100 200 Calorimeter hit energy sum e+ e- to W+ W-, 500 GeV 100 300 400 500 600 700 GeV Calorimeter hit energy sum e+ e- to W+ W-, 500 GeV Constant Mean Sigma 28.51 / 22 70.15 503.1 14.60 Constant Mean Sigma 80 33.74 / 22 68.24 502.4 15.08 70 80 60 60 50 40 40 30 20 20 10 0 0 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 500 600 700 GeV 0 0 100 200 300 400 500 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 28 Detector models comparison, 4 Tesla, t tbar, 500 GeV e+ e- to t tbar, 500 GeV e+ e- to t tbar, 500 GeV 120 Constant Mean Sigma 24.83 / 22 108.6 493.8 15.49 Constant Mean Sigma 120 38.30 / 22 107.8 495.0 14.83 100 100 80 80 60 60 40 40 20 0 20 0 100 200 300 400 500 600 700 GeV 0 0 100 200 Calorimeter hit energy sum e+ e- to t tbar, 500 GeV 400 500 600 700 GeV e+ e- to t tbar, 500 GeV Constant Mean Sigma 120 300 Calorimeter hit energy sum 14.80 / 22 109.8 498.1 15.99 120 Constant Mean Sigma 36.91 / 22 107.7 497.0 15.97 100 100 80 80 60 60 40 40 20 20 0 0 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 500 600 700 GeV 0 0 100 200 300 400 500 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 29 Detector models comparison, 3 Tesla, t tbar, 500 GeV e+ e- to t tbar, 500 GeV e+ e- to t tbar, 500 GeV Constant Mean Sigma 120 28.93 / 22 103.0 493.1 15.73 Constant Mean Sigma 120 22.52 / 22 112.1 493.0 15.04 100 100 80 80 60 60 40 40 20 0 20 0 100 200 300 400 500 600 700 GeV 0 0 100 200 Calorimeter hit energy sum e+ e- to t tbar, 500 GeV 400 500 600 700 GeV e+ e- to t tbar, 500 GeV 140 Constant Mean Sigma 120 300 Calorimeter hit energy sum 21.40 / 22 114.7 496.9 15.14 Constant Mean Sigma 120 33.59 / 22 110.4 495.4 16.25 100 100 80 80 60 60 40 40 20 20 0 0 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 500 600 700 GeV 0 0 100 200 300 400 500 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 30 Detector models comparison, 4 Tesla, t tbar, 360 GeV e+ e- to t tbar, 360 GeV e+ e- to t tbar, 360 GeV Constant Mean Sigma 140 15.59 / 18 136.1 354.2 13.38 120 160 140 100 80 80 60 60 40 40 20 20 0 100 200 300 400 500 600 700 GeV 0 0 100 200 Calorimeter hit energy sum 160 140 120 120 100 100 80 80 60 60 40 40 20 20 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 17.19 / 18 141.9 356.8 13.07 140 0 400 500 600 700 GeV e+ e- to t tbar, 360 GeV Constant Mean Sigma 160 300 Calorimeter hit energy sum e+ e- to t tbar, 360 GeV 0 26.58 / 18 139.5 353.5 13.04 120 100 0 Constant Mean Sigma 500 600 700 GeV 0 Constant Mean Sigma 0 100 200 300 400 500 23.59 / 18 137.8 355.0 13.69 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 31 Detector models comparison, 3 Tesla, t tbar, 360 GeV e+ e- to t tbar, 360 GeV e+ e- to t tbar, 360 GeV 160 Constant Mean Sigma 140 13.76 / 18 135.5 353.3 13.37 160 140 120 120 100 100 80 80 60 60 40 40 20 20 0 0 100 200 300 400 500 600 700 GeV Constant Mean Sigma 0 0 100 200 Calorimeter hit energy sum 500 600 700 GeV e+ e- to t tbar, 500 GeV Constant Mean Sigma 140 400 Calorimeter hit energy sum e+ e- to t tbar, 360 GeV 160 300 16.35 / 18 140.2 353.7 12.87 27.66 / 18 137.5 356.4 14.03 Constant Mean Sigma 120 33.59 / 22 110.4 495.4 16.25 100 120 80 100 80 60 60 40 40 20 20 0 0 100 200 300 400 Calorimeter hit energy sum Vasiliy Morgunov 500 600 700 GeV 0 0 100 200 300 400 500 600 700 GeV Calorimeter hit energy sum LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 32 Detector models comparison, 4 Tesla, W+ W-, 500 GeV Check quality, e+ e- to W+ W-, 500 GeV Constant Mean Sigma 250 Check quality, e+ e- to W+ W-, 500 GeV 37.14 / 14 199.8 2.904 10.18 250 Constant Mean Sigma 31.00 / 14 201.6 3.209 9.916 200 200 150 150 100 100 50 50 0 -60 -40 -20 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, e+ e- to W+ W-, 500 GeV 225 Constant Mean Sigma 200 -20 0 20 40 60 GeV Calorimeter energy - Available Check quality, e+ e- to W+ W-, 500 GeV 19.52 / 14 200.8 7.201 10.48 250 Constant Mean Sigma 31.17 / 14 203.9 7.300 9.854 200 175 150 150 125 100 100 75 50 50 25 0 -60 -40 -20 0 20 Calorimeter energy - Available Vasiliy Morgunov 40 60 GeV 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 33 Detector models comparison, 3 Tesla, W+ W-, 500 GeV Check quality, e+ e- to W+ W-, 500 GeV 250 Constant Mean Sigma Check quality, e+ e- to W+ W-, 500 GeV 30.15 / 14 204.5 0.1082 10.12 Constant Mean Sigma 250 30.64 / 14 206.0 1.275 9.828 200 200 150 150 100 100 50 0 50 -60 -40 -20 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, e+ e- to W+ W-, 500 GeV Constant Mean Sigma 250 -20 0 20 40 60 GeV Calorimeter energy - Available Check quality, e+ e- to W+ W-, 500 GeV 21.56 / 14 215.8 6.080 9.376 Constant Mean Sigma 250 29.17 / 14 213.5 5.985 9.444 200 200 150 150 100 100 50 0 50 -60 -40 -20 0 20 Calorimeter energy - Available Vasiliy Morgunov 40 60 GeV 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 34 Detector models comparison, 4 Tesla, t tbar, 500 GeV Check quality, e+ e- to t tbar, 500 GeV 200 Constant Mean Sigma 175 Check quality, e+ e- to t tbar, 500 GeV 18.03 / 14 174.4 2.721 12.35 200 Constant Mean Sigma 175 12.55 / 14 177.3 4.180 11.88 150 150 125 125 100 100 75 75 50 50 25 25 0 -60 -40 -20 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, e+ e- to t tbar, 500 GeV 200 Constant Mean Sigma 175 -20 0 20 40 60 GeV Calorimeter energy - Available Check quality, e+ e- to t tbar, 500 GeV 11.63 / 14 171.9 7.964 13.19 Constant Mean Sigma 200 19.39 / 14 174.4 6.747 12.21 175 150 150 125 125 100 100 75 75 50 50 25 0 25 -60 -40 -20 0 20 Calorimeter energy - Available Vasiliy Morgunov 40 60 GeV 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 35 Detector models comparison, 3 Tesla, t tbar, 500 GeV Check quality, e+ e- to t tbar, 500 GeV Constant Mean Sigma 200 Check quality, e+ e- to t tbar, 500 GeV 17.41 / 14 168.9 2.417 12.08 225 Constant Mean Sigma 200 15.81 / 14 174.2 2.044 12.77 175 175 150 150 125 125 100 100 75 75 50 50 25 25 0 -60 -40 -20 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, e+ e- to t tbar, 500 GeV Constant Mean Sigma 200 20 40 60 GeV Constant Mean Sigma 200 12.77 / 14 182.3 5.967 11.41 175 150 150 125 125 100 100 75 75 50 50 25 25 -60 -40 -20 0 20 Calorimeter energy - Available Vasiliy Morgunov 0 Check quality, e+ e- to t tbar, 500 GeV 12.20 / 14 184.0 6.526 11.62 175 0 -20 Calorimeter energy - Available 40 60 GeV 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 36 Detector models comparison, 4 Tesla, t tbar, 360 GeV Check quality, e+ e- to t tbar, 360 GeV 250 Constant Mean Sigma 225 Check quality, e+ e- to t tbar, 360 GeV 13.21 / 18 217.7 3.138 10.54 250 Constant Mean Sigma 19.91 / 18 218.2 2.805 10.40 200 200 175 150 150 125 100 100 75 50 50 25 0 -60 -40 -20 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, e+ e- to t tbar, 360 GeV 250 Constant Mean Sigma 150 100 100 50 50 -20 0 20 Calorimeter energy - Available Vasiliy Morgunov Constant Mean Sigma 150 -40 20 250 200 -60 0 40 60 GeV Check quality, e+ e- to t tbar, 360 GeV 28.36 / 18 224.0 5.503 10.02 200 0 -20 Calorimeter energy - Available 40 60 GeV 0 -60 -40 -20 0 20 21.95 / 18 216.7 4.654 10.44 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006 Abs Calibr 37 Detector models comparison, 3 Tesla, t tbar, 360 GeV Check quality, e+ e- to t tbar, 360 GeV 250 Constant Mean Sigma Check quality, e+ e- to t tbar, 360 GeV 11.84 / 18 219.5 2.244 10.36 Constant Mean Sigma 225 15.37 / 18 215.0 2.289 10.73 200 200 175 150 150 125 100 100 75 50 50 25 0 -60 -40 -20 0 20 40 60 GeV 0 -60 -40 Calorimeter energy - Available Check quality, e+ e- to t tbar, 360 GeV Constant Mean Sigma 250 -20 0 20 40 60 GeV Calorimeter energy - Available Check quality, e+ e- to t tbar, 500 GeV 16.26 / 18 218.0 5.952 10.50 Constant Mean Sigma 200 12.77 / 14 182.3 5.967 11.41 175 200 150 125 150 100 100 75 50 50 25 0 -60 -40 -20 0 20 Calorimeter energy - Available Vasiliy Morgunov 40 60 GeV 0 -60 -40 -20 0 20 40 60 GeV Calorimeter energy - Available LCWS2006, Bangalore, India, 9-13 March 2006
© Copyright 2026 Paperzz