A B BC B a definitive sheet by chad valencia, ucla mathematics major version 2.0.2000, rev 1 c a x A b C AB personal notes trig in a nutshell calculus sin x =a/c= opposite/hypotenuse cos x = b/c = adjacent/hypotenuse sec x = c/b = hypotenuse/adjacent csc x = c/a = hypotenuse/opposite tan x = a/b = sin x/cos x = opposite/adjacent cot x = b/a = cos x/sin x = adjacent/opposite y Range: ( - ¥, k ] -¥ < y £ k Sample Function f(x) absolute maximum Odd/Even Identities sin (- x) = - sin x cos (- x) = cos x tan (- x) = - tan x cot (- x) = - cot x sec (- x) = sec x csc (- x) = - csc x k 3 step test for continuity: relative maximum 1. f(c) exists f '(x)=0 2. lim exists x->c Double Angle Identities sin 2x = 2 sin x cos x cos 2x = cos ² x - sin ² x cos ² x = 1+ cos 2x 2 sin ² x = 1- cos 2x 2 3. lim = f(c) inflection point f ''(x)=0 x->c sin ² x + cos ² x = 1 1 + tan ² x = sec ² x 1 + cot ² x = csc ² x relative minimum f '(x)=0 a c b zero f (x)=0 x e d - + e d b f (x) = a e f ''(x) b if: a b = x Area = òaf (x) dx lim (1+ 1n log a x = b n n ®¥ )= e trig derivatives derivatives definition of the derivative: f ' (x) = lim f (x + h) - f (x) h h -> 0 Addition Rule f ' (u + v) = f ' u + f ' v ln (xy) = ln x + ln y ln (x/y) = lnx - lny ln x = n ln x ln e = e ln x = x ln 1 = 0 ln e = 1 1 + c x f (x) = log a x 1 - f '(x) log x = log10x logex = ln x logs in a nutshell Domain: ( - ¥, e ] -¥ < x £ e + cos (a+b) = cos a cos b - sin a sin b sin (a+b) = sin a cos b + cos a sin b cos (a - b) = cos a cos b + sin a sin b sin (a - b) = sin a cos b - cos a sin b Product Rule f ' (u v) = udv + vdu Power Rule f ' ( x c ) = c x c -1 Quotient Rule v du - u dv u f'( )= v² v (Lo D Hi minus Hi D Lo over Lo Lo) Chain Rule (f o g)' = f ' g ' Inverse Trig Standard Trig 1 du (d/dx)(csc u) = - csc u cot u d -1 sin u = 1 - u² dx (d/dx)(sec u) = sec u tan u dx (d/dx)(cot u) = - csc ² u 1 -1 d tan u = 1 + u² du (d/dx)(tan u) = sec ² u dx dx (d/dx)(cos u) = - sin u 1 du -1 d (d/dx)(sin u) = cos u dx sec u = |u| u² - 1 dx volumes & areas transcendental derivatives l’Hôpital’s Rule When Mean Value Theorem f (b) - f (a) = f ' (c) b-a ¥ 0 = 0 OR ¥ f ' (x) lim f (x) = xlim ® a g ' (x) x®a lim x®a f (x) g(x) d dx ln u d u a dx g(x) integrals Second Fundamental Theorem of Calculus (Leibniz's Rule) b òaf (x) dx = F(a) - F(b) d dx where F is the antiderivative of f ò v (x) f (t) dt u (x) = f (v) dv - f (u) du dx dx Trapezoidal Rule T = b - a (y0 + 2y1 + 2y2+ ... + 2yn - 1+ yn ) 2n a & b = bounds n = number of intervals (Use h(b1+b2)/2 for trapezoids of different height) (use b x h for approximation) RRAM MRAM Power Rule: a òx dx = xa+1 +C a+1 x¹-1 Average Value b Avg. (f (x)) = 1 . f (x) dx b-a ò a du dx dx ln a Standard Trig ò ò òu Alternating Signs Tabular Integration ò [(algebraic)(trigonometric/e)]dx ex: ò 2x³cosx dx + cosx 2x³ - sinx 6x² 12x + -cosx 12 - -sinx cosx 0 2x³sinx + 6x²cosx - 12x sin x - 12 x cos x +C d du u² - a² = 1 a -1 sec | u |+ a transcendental integrals du òu = ln |u| + C u u ò ln x dx = x ln x - x + C ò e du = e + C u u ò a du = lnaa+ C ò px + q = A + (x+a)(x+b) (x+a) B (x+b) px + q = A + B (x+a)2 (x+a) (x+a)2 px2 - qx + r = A + Bx + C (x+a)(x2+bx+c) (x+a) (x2+bx+c) 3 3 SA(sphere) = 4 p r ² A =s²4 3 velocity & motion ò ò a(t) s(t) or x(t) position acceleration v(t) d velocity d the velocity equation s(t) = ½ g t ² + vO t + sO g = - 32 ft / s ², - 9.8 m / s ² disc & shell methods Volume Disc (no hole) C partial fractions integration by parts òudv = uv - òvdu Logarithmic Inverse Trig Algebraic Trigonometric Euler's Constant (e) =a e ò sin x dx = - cos x + C ò tan x dx = - ln |cos x| + C ò cos x dx = sinx + C ò cot x dx = ln |sin x| + C ò sec² x dx = tan x + C ò sin² x dx = x - sin 2x + C 2 4 ò csc² x dx = - cot x + C ò cos² x dx = x + sin 2x + C ò sec x tan x dx = sec x + C 2 4 ò csc x cot x dx = - csc x + C Inverse Trig du -1 du -1 u =1 tan au + C a a² - u² = sin a + C a² + u² Rectangular Approximation Methods (RAM) Priority: u u du trigonometric integrals First Fundamental Theorem of Calculus LRAM d u e = dx 1 du = u dx V(cone) = 1 p r ² h V(sphere) = 4 p r ³ Disc w/ Hole Shell d b b 2 2 ò r dx pò(R - r )dx 2pòr h dy Y-Axis pò r dy pò(R - r )dy 2pòr h dx X-Axis 2 p a a d b 2 2 c c d 2 a c r = radius R = Outside radius r = inside radius r = radius h = height trig substitutions Use: If you see: 2 2 a +x x = a tan q 2 2 a -x x = a sin q 2 2 x -a x = a sec q solved through trig substitution: òsec u du = ln |sec u + tan u| + C personal notes A B BC improper integrals ¥ 1 calculus Comparison Test P Series Test: 1 xp a definitive sheet by chad valencia, ucla mathematics major version 2.0.2000, rev 1 if f(x) < convergent function, f(x) is convergent Converges if p > 1 Diverges if 0 < p < 1 if f(x) > divergent function, f(x) is divergent Limit Comparison Test: Let f(x) be a known convergent or divergent function: lim f(x)= L 0 < L < ¥ x ® ¥ g(x) f(x) & g(x) both converge or both diverge ¥ Greek letter sigma (sum of) sequences Limits of Common Sequences: lim ln n = Convergence/Divergence: Let L be a finite number n lim lim an = L n ®¥ lim x = n! n=0 0 n n ®¥ 1 n lim (1+ 1n n n ®¥ lim (1+ n ®¥ x n Geometric Series )= e n )= e b a dy ) dx 1+(dx 2 Arc Length (y-axis): d dx 2 + dy dy c 1( ) Surface Area: b 2 dx 2p ay 1+ (dy dx) ) Sn= a(1-r (1-r) Work Work = Force x Distance = Density x Volume x Distance = Density x Sum of Areas x Distance Hooke’s Law for Springs Force = f(x) = kx (k is a constant, x is the distance) Work = ò f(x)dx, from position A to position B T - T S= (T0 - TS )e T = temperature of object at a given time Ts = temperature of surroundings To = temperature at time zero t = time Polar Basic Shapes (pink = cosine, blue = sine) Circles Lemniscates Spiral of Archimedes r = a cos q r² = a cos q r = aq r = a sin q r² = a sin q ¥ 2 x ( ) ( ) lim San= r Speed dy (dx dt) + (dt) 2 2 r = nlim ®¥ Velocity Equation for Vectors: (-½ g t² + S0)j + V0 t where v0 = #( cos t i + sin t j) # = initial velocity/muzzle speed Rectangular x n an 3. Power Series 1. Use ratio test on the absolute value of the series. Converges if r < 1 No conclusion if r = 1 2. Set r < 1 to find the interval 3. To check bounds, plug Divergent if r > 1 into original equation 4. Take ½ of the interval to find radius of convergence Error (Alternating Series/Taylor) Error = Actual - Approximate Error < First Unused Term taylor/maclaurin series Polar Conversion (x,y) <-> (r,q) x² + y² = r² y x = r cos q tan q =x y = r sin q (x,y) Root Test an > an+1 for all n. lim an = 0 n ®¥ 2. Sbn an+1 r = nlim ®¥ an n-1 (-1) an n=1 Converges if: 1. All terms are positive 0<r<¥ San & Sbn both converge or both diverge Ratio Test 0 Alternating Series Test (AST) Let Sbn be a known convergent or divergent series: Vector Valued Functions r(t) = x(t)i + y(t)j r'(t) = x'(t)i + y'(t)j òr(t)dt = (òx(t)dt + c)i + (òy(t)dt + c)j y k Limit Comparison Test lim an ¹ n ®¥ series is divergent Comparison Test if San < convergent series, San is convergent if San > divergent series, San is divergent If integral converges, series converges If integral diverges, series diverges n ®¥ Unit Vector: v ||v|| an n=k ò ax dx n=k T(t) = r ' (t) If T = u1i + u2j ||r ' (t)|| N = -u2i + u1j - kt n=1 ¥ an ( ) ( ) Unit Tangent and Unit Normal Vectors ||v|| = a² + b² Newton’s Law of Cooling ¥ vectors Vector Length (magnitude/norm): n-1 Integral Test ( ) Notation v = ai + bj <a,b> ¥ a a r = 1-r |r| <1 if |r| > 1, series diverges First Derivative: Second Derivative: Arc Length: b dy dy dx 2 dy 2 d dt dx dt + dt dy = dt d²y = a dx dx² dx dx dt dt Surface Area (x-axis): Surface Area (y-axis): b b dx 2 dy 2 dx 2 dy 2 dt dt + dt + dt dt dt a a 2 y ( ) ( ) ¥ n x Nth Term Test for Divergence Given: If: Infinite Series: Finite Series: extraneous bc concepts parametric Arc Length (x-axis): first number n ®¥ n ®¥ lim an¹ L n series n ®¥ n ®¥ Divergent sequence 0 n |x|<1 x = 0(fraction) lim n n= lim n = 1 n ®¥ Convergent Sa BC last number Taylor Polynomial P(x) = f (a) + f ' (a)(x - a) + f ''(a)(x - a)2 + f ''' (a)(x - a)3 + … + f n (a)(x - a)n 2! 3! n! ¥ n n - a) S f ( a)(x n! n =0 Polar Limacons Limacons Cardioids w/ Dimple w/ Inner Loop r = a + b cos q r = a + b cos q r = a + b cos q r = a + b sin q r = a + b sin q r = a + b sin q |a|=|b| |a|>|b| |a|<|b| Common MacLaurin Series (r,q) ¥ 2 4 6 ( - 1)n x2n cos x = 1- x + x - x + …= (2n)! n =0 2! 4! 6! r q Polar Slope r ' sin q + r cos q r ' cos q - r sin q S sin x = x - x + x - x + … = ( - 1) x S (2n+1)! 3! 5! 7! e = 1 + x + x² + x³+... = S xn! 2! 3! ¥ 3 5 n n =0 ¥ x Polar Area: 1 b2 dq 2 ar r = a cos bq r = a sin bq Roses If b is odd, b = number of petals If b is even, 2b = number of petals Polar Surface Area (x-axis): b 2 dr 2 2p r sin q r + dq dq a Polar Arc Length: b 2 dr 2 r+ dq dq a ( ) ( ) Polar Surface Area (y-axis): b 2 dr 2 dq 2p a r cos q r + (dq) hyperbolic trig functions Every function splits into Even and Odd parts: f(x) = f(x) + f(-x) + f(x) - f(-x) 2 2 even odd cosh x = e x + e x 2 sinh x = e x - e x 2 tanhx = e x - e x ex + e -x sech x = 2 e x + ex csch x = 2 e x - ex cothx = e x + e x ex - e -x 2n+1 7 sinh 2x = 2 sinh x cosh x cosh 2x = cosh ² x - sinh ² x cosh ² x = cosh 2x+1 2 sinh ² x = cosh 2x - 1 2 cosh² x - sinh² x = 1 tanh² x + sech ² x = 1 coth² x - csch² x = 1 Standard Hyperbolic Trig Derivatives (d/dx)(csch u) = - csch u coth u (du/dx) (d/dx)(sech u) = - sech u tanh u (du/dx) (d/dx)(coth u) = - csch ² u (du/dx) (d/dx)(tanh u) = sech ² u (du/dx) (d/dx)(cosh u) = sinh u (du/dx) (d/dx)(sinh u) = cosh u (du/dx) n n =0 ¥ S 1 = 1 + x + x² + x³+... = xn 1- x n =0 ¥ S 1 = 1 - x + x² - x³+... = (-1)n xn 1+x n =0 Inverse Hyperbolic Trig Derivatives 1 du d -1 dx cosh u = u² - 1 dx , u > 1 1 du d -1 dx sinh u =u² + 1 dx 1 -1 d tanh u = 1 - u² du , |u|<1 dx dx 1 du -1 d coth u = , |u|>1 dx 1 - u² dx 1 du -1 d dx sech u =u u² - 1 dx , 0<u<1 1 du -1 d dx csch u =|u| u² - 1 dx , u ¹0 Hyperbolic Trig Integrals ò sinh u du = cosh u + C ò cosh u du = sinh u + C ò sech² u du = tanh u + C ò csch² u du = - coth u + C ò sech x tanh u du =- sech u + C ò csch x coth u du = - csch u + C © 2000 Chad A. Valencia. All Rights Reserved.
© Copyright 2026 Paperzz