bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Envelope-tACSmodulatesintelligibilityofspeechinnoise AnnaWilsch1,ToralfNeuling2,&ChristophS.Herrmann1,3* 1 ExperimentalPsychologyLab,DepartmentofPsychology,ClusterofExcellence“Hearing4all”, EuropeanMedicalSchool,CarlvonOssietzkyUniversity,Oldenburg,Germany 2 3 DepartmentofPsychology,UniversityofSalzburg,Salzburg,Austria ResearchCenterNeurosensoryScience,CarlvonOssietzkyUniversity,Oldenburg,Germany * Correspondence: Prof.Dr.ChristophHerrmann ExperimentalPsychologyLab CarlvonOssietzkyUniversitätOldenburg AmmerländerHeerstr.114-118 26131Oldenburg Tel.: +494417984936 Fax: +494417983865 Email: [email protected] Abstract Corticalentrainmentoftheauditorycortextothebroad-bandtemporalenvelopeofaspeechsignalis crucialforspeechcomprehension.Thisentrainmentresultsinphasesofhighandlowneuralexcitability whichstructureanddecodetheincomingspeechsignal.Entrainmenttospeechisstrongestinthetheta frequencyrange(4–8Hz),theaveragefrequencyofthespeechenvelope.Ifaspeechsignalisdegraded, for example masked byirrelevant information such as noise, entrainment to the speech envelopeis weakerandspeechintelligibilitydeclines. Besides perceptually evoked cortical entrainment, transcranial alternating current stimulation (tACS) can entrain neural oscillations by applying an electric signal to the brain. Accordingly, tACS-induced entrainmentinauditorycortexhasbeenshowntoimproveauditoryperception.Theaimofthecurrent studywastoexternallymodulatespeechintelligibilitybymeansoftACSsuchthattheelectriccurrent correspondstotheenvelopeofthepresentedspeechstream. ParticipantsperformedtheOldenburgsentencetestwithsentencespresentedinnoiseincombination withtACS.Critically,thetimelagbetweensentencepresentationandtACSwasmanipulatedfrom0to 250msin50-mssteps(auditorystimuliweresimultaneoustoorprecededtACS). First, we were able to show that envelope-tACS modulated sentence comprehension such that on averagesentencecomprehensionatthetimelagofthebestperformancewassignificantlybetterthan sentencecomprehensionoftheworstperformance.Second,sentencecomprehensionacrosstimelags wasmodulatedsinusoidally. Insum,envelopetACSmodulatesintelligibilityofspeechinnoisepresumablybyenhancing(timelag within-phasestimulation)anddisrupting(timelagwithout-of-phasestimulation)corticalentrainment tothespeechenvelopeinauditorycortex. 1 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Introduction Thelifespanoftheworldpopulationiscontinuouslyincreasing.Thisincreaseinageentailsastrong increase in hearing loss. In 2030, the prevalence of clinically relevant hearing loss is expected to be doubled.Consequently,hearinglosswillbeoneofthesevenmostprevalentchronicdiseases(WHO 2004;WHO2013). Despite huge advances in the development of hearing aid technology, challenging listening situationssuchastheso-calledcocktailpartyproblem(Cherry,1953)arestillnotentirelycompensated for.Thepresentstudywillsuggesttranscranialalternatingcurrentstimulation(tACS)asapossibilityto improvespeechcomprehensioninadverselisteningsituations. The ability to comprehend speech is tightly linked to the neural oscillatory response in auditory cortex.Thatisbecauseauditorycortextracksthespectro-temporalstructureofspeechalsoknownas corticalentrainment(e.g.,Abramsetal.,2008;Lalor&Foxe,2010;Luo&Poeppel,2007).Ingeneral, neuraloscillationsareknowntoentraintothetemporalstructureofexternalstimuli.Acrossdifferent sensory modalities, it has been shown that a rhythmically presented stimulus leads to a phase and amplitudealignmentofneuraloscillationswithinthefrequencyofthepresentedrhythm.Entrainment of oscillations results in distinct phases of high and low excitability on the population level, thereby generating time windows of a higher firing likelihood (Engel et al., 2001; Lakatos et al., 2005). This synchronization of neural oscillations and external stimuli facilitates the processing of relevant information(Lakatosetal.,2008;Schroederetal.,2010). Entrainment to the broad band temporal envelope of speech has been shown to be crucial for speechcomprehension(e.g.,Doellingetal.,2014).Thestrongestresponsecanbefoundinthetheta range around 4–8 Hz which corresponds to the average frequency rate of a speech signal (Chandrasekaranetal.,2009;Ghitza&Greenberg,2009).Thefunctionalroleofcorticalentrainmentto theenvelopehasbeenwidelydiscussed(forareview,seeDing&Simon,2014;).Whereassomeargue thatentrainmentorphaselockingtotheenvelopeonlytrackstheacousticpropertiesoftheenvelope (Howard & Poeppel, 2010; Millman et al., 2015; Steinschneider et al., 2013) others argue that entrainment is a mechanism of syllabic parsing (Giraud & Poeppel, 2012) or sensory selection, (i.e., segragating the speech stream from background noise; Schroeder & Lakatos, 2009). Overall, neural oscillations in the 4–8-Hz range are supposed to be a means to structure and decode the incoming acousticstream(forareview,seePeelle&Davis,2012). Theextenttowhichauditorycortexisabletotrackaspeechstreamdependsontheamountof spectral detail. That is, the more degraded the speech stream the worse the neural tracking of the envelope(Peelle&Davis,2012).Alongtheselines,Ahissaretal.(2001)couldshowthattheabilityto 2 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. comprehendspeechdependsonhowwellauditorycortextracksthespeechsignal(seealsoPeelleet al.,2013).AstudybyDingandSimon(2013)manipulatedthesignal-to-noiseratioofcontinuousspeech andstationarynoise.Theywereabletoshowthatentrainmenttotheenvelopeinthe4to8-Hzrange decreaseswithincreasingnoiselevel.Thesefindingsindicatethatentrainmenttothespeechenvelope iscorrelatedwithnoiselevelandspeechintelligibility. Ifasuccessfulentrainmentofoscillationsintheauditorycortexisessentialforspeechintelligibility, it should be possible to increase intelligibility of an acoustically degraded speech signal by inducing corticalentrainmentandtodecreaseintelligibilitybydisruptingcorticalentrainment.Ifthiswouldbe established,thespeechcomprehensionofhearingaiduserswhoexperiencehearingimpairmentscould beimprovedbyexternallyinducingcorticalentrainmenttothespeechenvelope.Onetechniquethatis capable to modulate ongoing brain oscillations is transcranial alternating current stimulation (tACS). tACSinducescorticalentrainmentinafrequencyspecificmanner(forreviews,seeAntal&Paulus,2013 and Herrmann et al., 2013; Helfrich et al., 2014; Zaehle et al., 2010). By modulating the resting membranepotentialofneuronsviatACS,oscillatoryactivityisguidedbytheexternaloscillationsonthe populationlevel(Fröhlich&McCormick,2010).Atthesametime,tACSisabletodisruptentrainment bymeansofstimulationthatisanti-phasictosynchronizedcorticalactivity(Helfrich,Knepper,etal., 2014;Strüberetal.,2014). Similartoentrainmenttoexternalstimuli,tACSinducedentrainmenthasbeenshowntomodulate auditoryperception(forareview,seeHeimrathetal.,2016).Forexample,tACSinthealphafrequency range(10Hz)ledtocorticalentrainmentwhichinturnmodulateddetectionofpuretonesembedded innoiseinasinusoidalmanner.Thatis,pure-tonedetectiondependedonthephaseofthestimulation signal(Neulingetal.,2012).FortACSinthedeltafrequencyrange(4Hz),phasedependentdetectionof near-thresholdauditoryclicktrainscouldbeshownaswell(Rieckeetal.,2015).Bothstudieswereable to provide insight that entrainment induced by tACS modulates the perception of near-threshold auditory stimuli. Two studies that investigated the impact of tACS on speech stimuli showed that phonemedetectionwithsyllablesismodulatedby40-HztACSinyoungeraswellasinhearingimpaired adults(Rufener,Oechslin,etal.,2016;Rufener,Zaehle,etal.,2016). TheaimofthecurrentstudywastotestwhethertACSmodulatesspeechintelligibility.Participants performedthewell-establishedOldenburgsentencetest(OLSa;Wagneretal.,2001)withsentences presentedinnoiseincombinationwithtACS.Critically,thetACSsignalcorrespondedtothebroad-band envelope of the presented sentences (i.e., envelope tACS), in order to simulate the LFPs during presentationofclearspeech.Here,wemanipulatedthetimelagbetweensentencepresentationand tACSfrom0to250msin50-mssteps(auditorystimuliweresimultaneoustoorprecededtACS).This wasdonefortworeasons:First,sofaritisunclearwhattimelagisappropriatesuchthattACSonset 3 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. andauditorystimulationonsetarealignedinauditorycortex.Second,inordertoobserveamodulation of sentence comprehension by tACS, different time lags allowed for aligned/in-phase and possibly beneficialentrainmentaswellasout-of-phaseordisruptingentrainmentpossiblyimpedingsentence comprehension. Overall, we expected to show that envelope tACS in auditory cortex modulates sentencecomprehensionandthatsentencecomprehensionfluctuatesacrosstimelags. Methods Participants Nineteen healthy young adults (11 female, mean age = 23.5 years) without prior or current neurologicalorpsychiatricdisordersparticipatedinthestudy.Theexperimentalprotocolwasapproved ofbytheethicscommitteeoftheUniversityofOldenburg,andhasbeenperformedinaccordancewith the ethical standards laid down in the 1964 Declaration of Helsinki. All participants gave written informedconsentbeforethebeginningoftheexperiment. Experimentalprocedure Eachparticipantcompletedtheexperimentintwosessionsontwodifferentdaysinordertoassure tACStobebelow20minutesperday.Theparticipantswereseateduprightinareclinerinadimlylit roombeforethestimulationelectrodesandheadphoneswereattached.Afterwards,thetACSthreshold wasdetermined.Tothisend,westartedthestimulation(3Hz,5sec)withanintensityof400μAand asked the participants to indicate whether they perceived a skin sensation or phosphene. The stimulationintensitywasincreasedbystepsof100μAuntiltheparticipantindicatedskinsensationor phospheneperceptionoranintensityof1500μAwasreached.Incasetheparticipantalreadyreported anadverseeffectat400μA,theintensitywasreducedtoastartlevelof100μA.Stimulationintensity throughouttheexperimentcorrespondedthentothehighestintensitythatwasnotperceivedbythe participant. Then, the participant’s absolute threshold of hearing was determined for each ear (i.e., subjective hearing threshold). After that the participant was familiarized with the speech test (Oldenburgersentencetest,seebelow).Subsequently,theparticipantcompleted9listsofthetestthat wererandomlyassignedto9tACSconditions(Figure1A),whichtookaround45minutes.Thedesign wasdouble-blind,i.e.,neithertheparticipant,northeexperimenterknewtheorderoftheconditions before the end of the experiment. After each list, the participants had to indicate whether they perceivedtheelectricalstimulation.Followingthespeechtest,theparticipantswereaskedtocomplete 4 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. aquestionnaireonpossibleadverseeffectsoftACS(Neulingetal.,2013).SeeFigure1Aforaschematic displayoftheexperimentalprocedure. Oldenburgsentencetest TheOldenburgsentencetest(OLSa;Wagneretal.,2001)isanadaptivetestthatcanbeusedto obtainaspeechcomprehensionthreshold(SCT)duringnoise.Forthetest,30sentencesthatconsisted offivewordsarepresentedandtheparticipantisaskedtorepeatthesentencesorally.Thetestmaterial consistsof40testlistsofwhich22(ontwodays)wererandomlychosenforeachparticipant.Foreach testsession,thetwotestlistswereusedtofamiliarizetheparticipantwiththetestmaterialaccording tothehandbook.Subsequently,ninelistswerepresented,separatedbyself-pacedbreaks. Thepresentedsentencesweresampledat44100HzanddeliveredviaMATLABtoaD/Aconverter (NIDAQ,NationalInstruments,TX,USA),attenuatedseparatelyforeachear(Tucker-DavisTechnologies, Alachua,FL,USA;modelPA5),andpresentedviaheadphones(HDA200,Sennheiser,Germany).The noise of the OLSa was presented at 65 dB above individual hearing threshold, the intensity of the sentenceswasadjustedaccordingtothetestmanual.Thepresentednoiseonsethadthesamespectral characteristicsasthepresentedsentence,inordertoobtainanoptimalmaskingeffectofthesentence. Thenoisewaspresentedfrom0.5spriortosentenceonsetuntil0.5saftersentenceoffset.Foreach OLSalist,aspeechcomprehensionthreshold(SCT)wascomputed,whichisthedifferenceofthesound pressureofthespeechsignalandthenoiseofthelast20sentences.Forexample,aSCTof-7dBimplies that 50 % of the sentences presented with an intensity lower than 7 dB lower than the noise were repeatedcorrectly. 5 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Figure1.Experimentalprocedure,tACSconditions,andelectrodeconfiguration.A.Schematicdisplayoftheexperimentaltime line.B.Exampleofatestsentenceandthecorrespondingexperimentalconditions.Petrolcoloredtracesdepictthe6different timelags,graytracesthedirectcurrentconditions.TimelagsrefertothepointintimeoftACSstimulationafterpresentation oftheauditorysentence(i.e.,0–250ms). C.BlueandredboxesillustratepositionsofthetACSelectrodesonthehead.Blue andredtracesdepictanexampleenvelopeofasentence(black:audiosignal)thatwasusedfortACSstimulation. Transcranialalternatingcurrentstimulation tACSwasappliedusingabattery-drivenNeuroConnDCStimulatorPlus(NeuroConnGmbH,Ilmenau, Germany).StimulationelectrodeswereplacedinabipolarmontageonCz(7×5cm)andbilaterallyover theprimaryauditorycorticesonT3andT4(4.18×4.18cm)accordingtotheinternational10-20EEG system(Figure1B).Theimpedancewaskeptbelow10kΩbyapplyingaconductivepaste(Ten20,D.O. Weaver,Aurora,CO,USA). Thestimulationsignalcorrespondedtotheenvelopeoftheconcurrentspeechsignal(i.e.,envelope tACS).Ascontrolcondition,anodalandcathodaldirectcurrent(DC+,DC–)matchedtothedurationof the speech signal were stimulated as well as no electrical stimulation (sham) (see Figure 1B). The envelope-tACSwasgeneratedbyextractingtheenvelopeofeachOLSasentence.Here,theabsolute valuesoftheHilberttransformoftheaudiosignalwerecomputedandthenfilteredwithasecondorder Butterworthfilter(10Hz,low-pass).TomaximizetACSefficacy,peaksandtroughsexceeding25%of thehighestabsolutepeakwerescaledto100%.Thisway,thepeak-to-peakintensitywasnormalized. Kubanek and colleagues (2013) reported a lag of around 100 ms between speech envelope and auditory cortex oscillations that are entrained by the signal. In order to find the time lag at which 6 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. auditorystimulationandtACSwerealignedinauditorycortex(highestbehavioraleffect)andalsoto testhowtACSmodulatesspeechcomprehensionacrossdifferenttimelags,envelopetACSwasassigned to6differentdelayconditions(seeFigure1A).EnvelopetACSwasinitiatedbetween0and250ms(50 msstep-size)aftertheonsetofthespeechsignal.ThetACSsignal(sampledat44100Hz)wasdelivered viaMATLABtotheD/AconverterandfedintotheexternalsignalinputoftheDCStimulator. DataAnalysis Foreachparticipant,wecomputedtheSCTforeachoftheninetACSconditions(seeFigure2A).We contrastedbestandworstperformance(onlythesixenvelope-tACSconditions)ofeachparticipantwith a t-test, regardless of the time lag. Then, in order to understand the nature of the modulation of sentencecomprehensionbytACS,eachparticipant’sperformancedatawerepeak-alignedtothebest performanceandz-transformed.Wedeterminedthispeaktobeatbinthree.Thatisthepositionofthe timelagof100ms,correspondingtothemediantimelagofthebestperformancesofallparticipants (seebelow).DuetothecircularfluctuationoftheSCTs(seeFigure2A)wefittedasinewavetothedata, comparabletotheapproachofNeulingetal.(2012;seealsoNaueetal.,2011).Asacontrol,wealso performedalinearfitandaquadraticfitonthealignedperformancedataofeachparticipant.Forthe sinewavefit,thefollowingequationwasfitted:𝑦 = 𝑎 ∗ sin(𝑓 ∗ 2𝜋 ∗ 𝑥 + 𝑐),wherexcorrespondsto thetACSbins[0;250ms].Theparametersa,f,andcwereestimatedbythefittingprocedure,wherea wastheamplitudeofthesinewave,fthefrequency,andcthephaseshift.Parameterawasbound betweenzeroandthree(notethatdatawerez-transformedandnotlikelytoexceedaz-valueofthree), f between two and eight (we expected that a modulation frequency would be in the theta range comparable to the syllable rate of the sentences), and c between zero and 12.57 (4 * π). The initial parametersinsertedinthefunctionwererandomlydrawnfromwithintherangerestrictionsofeach parameter, respectively. For the linear fit (𝑦 = 𝑎𝑥), the coefficient a was computed with a random startingvalue.Thequadraticfit(𝑦 = 𝑎𝑥 0 + 𝑏𝑥)wascomputedtoestimatethelinearcoefficientband thequadraticcoefficienta.Notethatalloftheequationsdonotcontainaparameterfortheintercept becausethefitteddatawasz-transformedandhencethemeanwaszero.Themodelfitswerecomputed with the lsqcurvefit function with Matlab (version 8.0, Optimization Toolbox) that allowed for 1000 iterationsinordertofindthebestmodel.CoefficientsofdeterminationR2wasreportedforeachfitas anindicatorforthegoodnessofthemodelfit. Finally,theBayesianinformationcriterion(BIC;Schwarz,1978)wascalculatedforeachfunction,in ordertocomparethegoodnessoffitofthesinusoidal,quadratic,andlinearfits.TheBICcorrectsforan unequalnumberofparameters.BICscoreswerecomparedwithanrmANOVAandpost-hoct-tests,in 7 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. ordertodeterminethefunctionthatrepresentsthemodulationinsentencecomprehensionbest.TtestswereFDR-corrected.Allanalyseswereexclusivelyperformedontheenvelope-tACSconditionsand not on tDCS as well as sham (see Figure 1) in order to assess the possible modulation of speech comprehensionsolelybasedontheeffectofvaryingtimelags. Results The aim of the present study was to find out whether envelope tACS modulates sentence comprehensioninnoiseandtospecifythenatureofthemodulation.Participantslistenedtosentences with different signal-to-noise ratios. Their ability to comprehend the presented sentences was quantified by the sentence comprehension threshold (SCT), the signal-to-noise ratio at which participantscomprehended50%ofasentence.tACSwasinducedsimultaneouslyorwithatimelagof 50to250ms.Figure2AdepictstheSCTsforeachtimelag(i.e.,delaybetweenauditoryonsetandtACS onset),aswellasanodalandcathodaltDCSandsham.TotestwhethertACSatdifferenttimelagsledto amodulationofsentencecomprehensionatall,wesortedtheSCTsbybestandworstperformanceof eachparticipantandcomparedbothgroupswithat-test(Figure2B).Thet-testshowedthattheSCTs ofthebestperformancesweresignificantlylowerthantheSCTsoftheworstperformances(t(18)=8.8, p<0.0001,Figure2B).ThiseffectindicatesthattACSmodulatedsentencecomprehension.Theoverall improvementinsentencecomprehensionwas0.86dBonaverage(sd=0.43dB).Themediantimelag thatledtothebestperformancewas100msandfortheworstwas50ms.Critically,timelagsimproving orimpedingperformancewerenotconsistentacrossparticipants. Figure2.ModulationofsentencecomprehensionthresholdbytACSatdifferenttimelags.A.Bargraphsrepresentsentence comprehensionthresholds(SCTs;signal-to-noiseratioindB)averagedacrossallparticipantsateachtACSstimulationtimelag, aswell asfor thecontrolconditionsDC+, DC–, and sham.Note, that lowervaluesindicatebetterperformance.Errorbars displaystandarderrorofthemean. B.Bargraphs representbestandworstSCTaveragedacrossparticipants,regardlessof timelags.Errorbarsdisplaystandarderrorofthemean.TheasteriskindicatesasignificantdifferencebetweentheSCTofthe bestperformanceandtheworstperformance. 8 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Therefore,forfurtheranalysesallparticipants’SCTsofallsixtimelagswerepeak-alignedsuchthat thebestperformanceconditionwasatthethirdposition,originallycorrespondingto100ms(Figure3A, leftpanel).Next,asinefit,aquadraticfit,andalinearfitwereperformedonthealigneddata,inorder tounderstandthenatureofthetACSinducedmodulationofspeechcomprehension. Figure3.Sinusoidal,quadratic,andlinearfits. A.Sinusoidalfit.Leftpanel:Theredcurvedisplaysgrandaveragesinusoidalfit. Petrolcoloredcurvesaresingle-subjectz-transformedsentencecomprehensionthresholds(SCTs)inSNR.Bestperformanceis alignedto0.1stimelag.Rightpanel.Redcurvesdisplayeachparticipantssinusoidalfit,petrolcoloredcurvesdisplayz-transformed SCTs.B.Quadraticfit.AnalogoustoA.onlythattheredcurvedisplaysquadraticthefit.C.Linearfit.AnalogoustoA.andB.only thattheredlinedisplaysthelinearfit. The grand average and single-subject sinusoidal fits are displayed in Figure 3A. The average goodness-of-fitisR2=0.73(sd=0.13).Parameterswereestimatedresultinginthisequation,averaged acrossparticipants:𝑦 = 1.15 ∗ sin(6.1 ∗ 2𝜋 ∗ 𝑥 + 6.04).Thequadraticfithadanaveragegoodnessof-fitofR2=0.13(sd=0.11)withcoefficientsof𝑦 = 23.03𝑥 − 4.63𝑥(seeFigure3Bforgrandaverage andsingle-subjectfits).Theaveragegoodness-of-fitofthelinearfitwasR2 =0.04(sd=0.04)withthe followingcoefficient:𝑦 = 0.08𝑥.ThermANOVAacrosstheBICscoresofthethreefitsshowedthatthe goodness-of-fitdifferedsignificantly(F(2,36)=41.09,p<0.0001).Post-hoct-testsrevealedthattheBIC score of the sinusoidal fit was significantly lower than the scores of the quadratic and linear fit (quadratic:t(18)=–7.18;p<0.0001;linear:t(18)=–5.95,p=0.0002).Thatmeansthatthegoodnessof-fitofthesinusoidalfitwassignificantlybetterthanthefitofthequadraticandlinearfunctions.Thus, thesinewaverepresentsthemodulationofspeechintelligibilitybyenvelope-tACSbest. Discussion Theaimofthepresentstudywastoshowthatenvelope-tACSinauditorycortexmodulatessentence comprehension.Weemployedaspeechintelligibilitytaskincombinationwithenvelope-tACSinduced atdifferenttimelagstofindthedelaywiththehighestbehavioralbenefits. The present study provides first evidence that sentences comprehension can be modulated by envelope-tACSandthatthismodulationfluctuatessinusoidallyacrossdifferenttimelags.Thisfinding supportspreviousclaimsontheimportantroleofcorticalentrainmentinauditorycortexforspeech 9 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. comprehension(forareview,seeZoefel&VanRullen,2015).Thesinusoidalfluctuationisinlinewith theresultsofNeulingetal.,2012.Theywereabletoshowthatpure-tonedetectiondependsonthe phaseofthetACSsignal.Thatis,theoptimaltACSphaseallowedincreasedexcitabilityofauditorycortex and consequently improved auditory perception. Similarly, time lags in the present study varied to assessatwhichtimelagtheenvelope-tACSsignalandthespeechenvelopearealignedandinphasein auditorycortex.Thatway,tACSisassumedtoinduceaphaseresetatthepointintimewhenthespeech signalreachesauditorycortexattheoptimalphase.Consequently,withadifferenttimelagtACSand thespeechsignalwerenotaligned.Thatmostlikelydisruptedentrainmentofauditorycortextothe speechenvelopeandtherebydisruptedspeechcomprehension. However,thesinusoidalmodulationofspeechcomprehensionimpliesthatafteronecycleofthe oscillationorsinecurve,tACSagainappearstobemorebeneficialforsentencecomprehension.Thisis mostlikelyduetotheperiodicityofentrainedneuraloscillationsandthespeechenvelope.Thecircular regularities of the envelope (speech as well as tACS) most probably induced an oscillatory neural response in auditory cortex due to cortical entrainment of the envelope. Consequently, speech comprehension, depending on entrainment to the envelope oscillates in this circular manner. The average frequency of the fitted sine waves was 6.1 Hz which is within the range of the amplitude modulationofspeechatfrequenciesthatarecrucialforintelligibility(4to16Hz;Drullmanetal.,1994; Shannonetal.,1995). Themedianofthetimelagswiththebestperformancewasat100msafterspeechonset.Thistime lagcorrespondstothelatencyoftheauditoryN100,anegativeevokedpotentialelicitedbyauditory stimulationafterapproximately100ms(forareview,seeNäätänen&Picton,1987).TheN100hasbeen arguedtobeasignatureofauditorypatternrecognitionandintegration(Näätänen&Winkler,1999). Although its characteristics such as amplitude, latency, and origin can be manipulated by different featuresofastimulus,theN100remainsoneoftherobustinitialresponsestospeech(andnon-speech sounds)inauditorycortex.Moreover,studiescomputingcrosscorrelationsbetweentheenvelopeofa sentenceandtherespectiveEEGresponseorcomputingspectro-temporalresponsefunctionsfound thepeakoftheeffectsatalatencyof100ms(Ding&Simon,2012;Hortonetal.,2013).DingandSimon explainthatthislatencyindicatesthattheEEGresponsetoaspeechsignalisdrivenbytheamplitude modulationsofthestimulus100msago. Aiken and Picton (2008) report that their transient response models, another measure for the relationshipbetweenspeechsignalandEEGresponse,peaksatalaterlatencyapproximatelyaround 180 ms. These divergent findings on the latency of the EEG response are in line with our findings. Although,ourdatashowthatanenvelope-tACSlagof100mshasastrongsentencecomprehension benefit,theindividuallatencyofbestcomprehensionperformancewasfoundatanyofthesixtimelags 10 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. rangingfrom0msto250ms.Itappearsasifthelatencyfromstimuluspresentationtoentrainmentin auditorycortexvariesstronglyacrossindividuals.Thus,toestimatetheindividualtimelagofauditory stimulationandtACS,furtherexperimentswillbeneededtomeasureindividualentrainmentlatencies withEEGpriortoenvelope-tACSapplication. Theimportanceofstudyingtranscranialelectricstimulation(tES)liesinitspossibilitiesofclinical applications.DifferentstudieshavedemonstratedthediverseclinicalbenefitoftACS(forasummaryof therapeuticalapplicationsoftES,seeVosskuhletal.,2015).Prehn-Kristensenetal.(2014),forexample, showedthat0.75HztESimprovesslowwavesleeptherebyenhancingtheconsolidationofdeclarative memory in children with attention-deficit/hyperactivity disorder. Furthermore, different studies investigatedtheeffectofrepetitivetransorbitalalternatingcurrentstimulation(rtACS)onneurological deficits.Here,thestimulatingelectrodesareplacedatorneartheeyeball.rtACShasbeenshownto significantlyrestorevisioninopticneuropathy(Sabeletal.,2011)aswellasinstrokepatientssuffering fromopticnervedamage(Galletal.,2016).Fedorovetal.(2010)alsoinducedrtACSonischemicstroke patients and showed that non-invasive rtACS modulates brain plasticity and enhances neurological recovery.tACShasalsobeensuccessfullyappliedinthetreatmentofParkinson’sdisease.Brittainetal. (2013) were able to significantly reduce tremor by inducing indivudally adjusted tACS in- and out-of phaseofthefrequencyofthetremorrhythm.Withadifferentapproach,Krauseetal.(2014)improved motorperformanceinpatientssufferingfromParkinson’sdiseasebyinducing20-HztACStothemotor cortex. Alongtheselines,theresultsofthepresentstudypavethewayforanotherclinicalapplicationof tACS.Thereporteddatasupportthehypothesisthatenvelope-tACSisbeneficialfortheintelligibilityof sentenceswithabadsignal-to-noiseratio(SNR).PeoplesufferingfromhearinglossexperiencebadSNRs constantly. For example, hearing aids are fitted to improve the SNR by filtering, amplifying, and compressingacousticsignals.Digitalhearingaids,incontrasttoanaloghearingaids,evenrespondto ongoinganalysisofthesignalandthebackgroundonamorecomplexlevel(forareview,seePichoraFuller&Singh,2006).Inadditiontotheconventionalmodeofoperationofhearingaids,envelope-tACS couldbeappliedtocounteracthearingimpairment.Envelope-tACSwouldthenimprovetheneuralSNR in auditory cortex by enhancing cortical entrainment to the relevant speech envelope and thereby improving speech comprehension. However, cortical responses to speech in older adults, the main audienceofhearingaidusers,needtobeinvestigatedinordertosuccessfullyimplementenvelopetACS inhearingdevices. 11 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Conclusion Altogether,inthisstudywehavedemonstratedthattACSindeedmodulatesintelligibilityofspeechin noisepresumablybyenhancinganddisruptingcorticalentrainmenttothespeechenvelopeinauditory cortex.WewereabletoshowthatthereisatimelagatwhichtACSappearstobemostbeneficialalbeit theoptimaltimelagvariesbetweenparticipants.Moreover,wesuggestthatenvelopetACShasthe potentialtocounteracthearingimpairmentwhenimplementedinhearingaids. Authorcontributions TN,CSH:designedthestudy;TN:acquiredthedata;TN,AW:analyzedthedata;AW,TN,CSH:wrotethe article. ConflictofInterestStatement CSHhasappliedforapatentforthemethodofenvelope-tACSandhasreceivedhonorariaaseditorfrom ElsevierPublishers,Amsterdam. Acknowledgments This research was funded by German Research Foundation (Deutsche Forschungsgemeinschaft, DFG ClusterofExcellence1077“Hearing4all”).WethankJonasObleserforfruitfuldiscussions. 12 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. References Abrams,D.A.,Nicol,T.,Zecker,S.,&Kraus,N.(2008).Right-HemisphereAuditoryCortexIsDominant forCodingSyllablePatternsinSpeech.JournalofNeuroscience,28(15),3958–3965. Ahissar,E.,Nagarajan,S.,Ahissar,M.,Protopapas,A.,Mahncke,H.,&Merzenich,M.M.(2001). Speechcomprehensioniscorrelatedwithtemporalresponsepatternsrecordedfromauditory cortex.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,98(23), 13367–72. Aiken,S.J.,&Picton,T.W.(2008).Humancorticalresponsestothespeechenvelope.EarandHearing, 29(2),139–157. Brittain,J.-S.,Probert-Smith,P.,Aziz,T.Z.,&Brown,P.(2013).Tremorsuppressionbyrhythmic transcranialcurrentstimulation.CurrentBiology,23(5),436–440. Chandrasekaran,C.,Trubanova,A.,Stillittano,S.,Caplier,A.,&Ghazanfar,A.A.(2009).TheNatural StatisticsofAudiovisualSpeech.PLoSComputationalBiology,5(7),e1000436. Cherry,E.(1953).Someexperimentsontherecognitionofspeech,withoneandwithtwoears.The JournaloftheAcousticalSocietyofAmerica,25(5),975–979. Ding,N.,&Simon,J.Z.(2012).Neuralcodingofcontinuousspeechinauditorycortexduringmonaural anddichoticlistening.JournalofNeurophysiology,107(1),78–89. Ding,N.,&Simon,J.Z.(2013).AdaptiveTemporalEncodingLeadstoaBackground-InsensitiveCortical RepresentationofSpeech.JournalofNeuroscience,33(13),5728–5735. Ding,N.,&Simon,J.Z.(2014).Corticalentrainmenttocontinuousspeech:functionalrolesand interpretations.FrontiersinHumanNeuroscience,8(May),311. Doelling,K.B.,Arnal,L.H.,Ghitza,O.,&Poeppel,D.(2014).Acousticlandmarksdrivedelta-theta oscillationstoenablespeechcomprehensionbyfacilitatingperceptualparsing.NeuroImage,85 Pt2,761–8. Drullman,R.,Festen,J.M.,&Reiner,P.(1994).Effectoftemporalenvelopesmearingonspeech reception.TheJournaloftheAcousticalSocietyofAmerica,95(2),1053–1064. Engel,A.K.,Fries,P.,&Singer,W.(2001).Dynamicpredictions:oscillationsandsynchronyintop-down processing.NatureReviews.Neuroscience,2(10),704–16. Fedorov,A.,Chibisova,Y.,Szymaszek,A.,Alexandrov,M.,Gall,C.,&Sabel,B.A.(2010).Non-invasive alternatingcurrentstimulationinducesrecoveryfromstroke.RestorativeNeurologyand Neuroscience,28(6),825–833. Fröhlich,F.,&McCormick,D.A.(2010).Endogenouselectricfieldsmayguideneocorticalnetwork activity.Neuron,67(1),129–43. Gall,C.,Schmidt,S.,Schittkowski,M.P.,Antal,A.,Ambrus,G.G.,Paulus,W.,…Sabel,B.A.(2016). Alternatingcurrentstimulationforvisionrestorationafteropticnervedamage:Arandomized clinicaltrial.PLoSONE,11(6),1–19. Ghitza,O.,&Greenberg,S.(2009).Onthepossibleroleofbrainrhythmsinspeechperception: intelligibilityoftime-compressedspeechwithperiodicandaperiodicinsertionsofsilence. Phonetica,66(1–2),113–26. Giraud,A.-L.,&Poeppel,D.(2012).Corticaloscillationsandspeechprocessing:emerging computationalprinciplesandoperations.NatureNeuroscience,15(4),511–7. Heimrath,K.,Fiene,M.,Rufener,K.S.,&Zaehle,T.(2016).ModulatingHumanAuditoryProcessingby TranscranialElectricalStimulation.FrontiersinCellularNeuroscience,10(53),1–18. Helfrich,R.F.,Knepper,H.,Nolte,G.,Strüber,D.,Rach,S.,Herrmann,C.S.,…Engel,A.K.(2014). SelectiveModulationofInterhemisphericFunctionalConnectivitybyHD-tACSShapesPerception. PLoSBiology,12(12). Helfrich,R.F.,Schneider,T.R.,Rach,S.,Trautmann-Lengsfeld,S.A.,Engel,A.K.,&Herrmann,C.S. (2014).Entrainmentofbrainoscillationsbytranscranialalternatingcurrentstimulation.Current Biology,24(3),333–339. Herrmann,C.S.,Rach,S.,Neuling,T.,&Strüber,D.(2013).Transcranialalternatingcurrent stimulation:areviewoftheunderlyingmechanismsandmodulationofcognitiveprocesses. FrontiersinHumanNeuroscience,7,1–13. 13 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Horton,C.,D’Zmura,M.,&Srinivasan,R.(2013).Suppressionofcompetingspeechthrough entrainmentofcorticaloscillations.JournalofNeurophysiology,109(12),3082–3093. Howard,M.F.,&Poeppel,D.(2010).Discriminationofspeechstimulibasedonneuronalresponse phasepatternsdependsonacousticsbutnotcomprehension.JournalofNeurophysiology, 104(5),2500–11. Krause,V.,Wach,C.,Südmeyer,M.,Ferrea,S.,Schnitzler,A.,&Pollok,B.(2014).Cortico-muscular couplingandmotorperformancearemodulatedby20Hztranscranialalternatingcurrent stimulation(tACS)inParkinson’sdisease.FrontiersinHumanNeuroscience,7(January),928. Kubanek,J.,Brunner,P.,Gunduz,A.,Poeppel,D.,&Schalk,G.(2013).TheTrackingofSpeechEnvelope intheHumanCortex.PLoSONE,8(1),e53398. Lakatos,P.,Karmos,G.,Mehta,A.D.,Ulbert,I.,&Schroeder,C.E.(2008).Entrainmentofneuronal oscillationsasamechanismofattentionalselection.Science,320(5872),110–3. Lakatos,P.,Shah,A.S.,Knuth,K.H.,Ulbert,I.,Karmos,G.,&Schroeder,C.E.(2005).Anoscillatory hierarchycontrollingneuronalexcitabilityandstimulusprocessingintheauditorycortex.Journal ofNeurophysiology,94(3),1904–11. Lalor,E.C.,&Foxe,J.J.(2010).Neuralresponsestouninterruptednaturalspeechcanbeextracted withprecisetemporalresolution.EuropeanJournalofNeuroscience,31(1),189–193. Luo,H.,&Poeppel,D.(2007).Phasepatternsofneuronalresponsesreliablydiscriminatespeechin humanauditorycortex.Neuron,54(6),1001–1010. Millman,R.E.,Johnson,S.R.,&Prendergast,G.(2015).TheRoleofPhase-lockingtotheTemporal EnvelopeofSpeechinAuditoryPerceptionandSpeechIntelligibility.JournalofCognitive Neuroscience,27(3),533–545. Näätänen,R.,&Picton,T.W.(1987).TheN1WaveoftheHumanElectricandMagneticResponseto Sound:AReviewandanAnalysisoftheComponentStructure.Psychophysiology,24(4),375–425. Näätänen,R.,&Winkler,I.(1999).Theconceptofauditorystimulusrepresentationincognitive neuroscience.PsychologicalBulletin,125(6),826–859. Naue,N.,Rach,S.,Strüber,D.,Huster,R.J.,Zaehle,T.,Korner,U.,&Herrmann,C.S.(2011).Auditory Event-RelatedResponseinVisualCortexModulatesSubsequentVisualResponsesinHumans. JournalofNeuroscience,31(21),7729–7736. Neuling,T.,Rach,S.,&Herrmann,C.S.(2013).Orchestratingneuronalnetworks:sustainedaftereffectsoftranscranialalternatingcurrentstimulationdependuponbrainstates.Frontiersin HumanNeuroscience,7,161. Neuling,T.,Rach,S.,Wagner,S.,Wolters,C.H.,&Herrmann,C.S.(2012).Goodvibrations:oscillatory phaseshapesperception.NeuroImage,63(2),771–8. Peelle,J.E.,&Davis,M.H.(2012).Neuraloscillationscarryspeechrhythmthroughtocomprehension. FrontiersinPsychology,3,1–17. Peelle,J.E.,Gross,J.,&Davis,M.H.(2013).Phase-LockedResponsestoSpeechinHumanAuditory CortexareEnhancedDuringComprehension.CerebralCortex,23(6),1378–1387. Pichora-Fuller,M.K.,&Singh,G.(2006).EffectsofAgeonAuditoryandCognitiveProcessing: ImplicationsforHearingAidFittingandAudiologicRehabilitation.TrendsinAmplification,10(1), 29–59. Prehn-Kristensen,A.,Munz,M.,Göder,R.,Wilhelm,I.,Korr,K.,Vahl,W.,…Baving,L.(2014). Transcranialoscillatorydirectcurrentstimulationduringsleepimprovesdeclarativememory consolidationinchildrenwithattention-deficit/hyperactivitydisordertoalevelcomparableto healthycontrols.BrainStimulation,7(6),793–799. Riecke,L.,Formisano,E.,Herrmann,C.S.,&Sack,A.T.(2015).4-HzTranscranialAlternatingCurrent StimulationPhaseModulatesHearing.BrainStimulation,8(4),777–783. Rufener,K.S.,Oechslin,M.S.,Zaehle,T.,&Meyer,M.(2016).TranscranialAlternatingCurrent Stimulation(tACS)differentiallymodulatesspeechperceptioninyoungandolderadults.Brain Stimulation,9(4),560–565. Rufener,K.S.,Zaehle,T.,Oechslin,M.S.,&Meyer,M.(2016).40Hz-Transcranialalternatingcurrent stimulation(tACS)selectivelymodulatesspeechperception.InternationalJournalof 14 bioRxiv preprint first posted online Jan. 3, 2017; doi: http://dx.doi.org/10.1101/097576. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Psychophysiology,101(January),18–24. Sabel,B.A.,Fedorov,A.B.,Naue,N.,Borrmann,A.,Herrmann,C.,&Gall,C.(2011).Non-invasive alternatingcurrentstimulationimprovesvisioninopticneuropathy.RestorativeNeurologyand Neuroscience,29(6),493–505. Schroeder,C.E.,&Lakatos,P.(2009).Low-frequencyneuronaloscillationsasinstrumentsofsensory selection.TrendsinNeurosciences,32(1),9–18. Schroeder,C.E.,Wilson,D.A.,Radman,T.,Scharfman,H.,&Lakatos,P.(2010).DynamicsofActive Sensingandperceptualselection.CurrentOpinioninNeurobiology,20(2),172–6. Schwarz,G.(1978).Estimatingthedimensionofamodel.TheAnnalsofStatistics,6(2),461–464. Shannon,R.V,Zeng,F.G.,Kamath,V.,Wygonski,J.,&Ekelid,M.(1995).Speechrecognitionwith primarilytemporalcues.Science,270(5234),303–304. Steinschneider,M.,Nourski,K.V,&Fishman,Y.I.(2013).Representationofspeechinhumanauditory cortex:Isitspecial?HearingResearch,305(1),57–73. Strüber,D.,Rach,S.,Trautmann-Lengsfeld,S.A.,Engel,A.K.,&Herrmann,C.S.(2014).Antiphasic40 HzOscillatoryCurrentStimulationAffectsBistableMotionPerception.BrainTopography,27(1), 158–171. Vosskuhl,J.,Strüber,D.,&Herrmann,C.S.(2015).TranskranielleWechselstromstimulation.Der Nervenarzt,1516–1522. Wagner,K.,Kühnel,V.,&Kollmeier,B.(2001).EntwicklungundEvaluationeinesSatztestsfürdie deutscheSprache,Teil1:DesigndesOldenburgerSatztests.ZeischriftFürAudiologie,1,4–15. Wöstmann,M.,Fiedler,L.,&Obleser,J.(2016).Trackingthesignal,crackingthecode:speechand speechcomprehensioninnon-invasivehumanelectrophysiology.Languange,Cognitionand Neuroscience,1–15. Zaehle,T.,Rach,S.,&Herrmann,C.S.(2010).TranscranialAlternatingCurrentStimulationEnhances IndividualAlphaActivityinHumanEEG.PLoSONE,5(11),e13766. Zoefel,B.,&VanRullen,R.(2015).TheRoleofHigh-LevelProcessesforOscillatoryPhaseEntrainment toSpeechSound.FrontiersinHumanNeuroscience,9,1–12. 15
© Copyright 2026 Paperzz