Workshop #1 Professor D. Olles 1. Simplify the following expressions: a. 163/4 √ √ b. 200 − 8 c. 1 3 d. 3 π/2 +3− 5 6 2. Factor completely: a. x2 − 7x + 10 b. 2x3 + 6x2 − 36x c. 3x2 − 11x − 4 d. 4x2 − 25 e. x3 + 3x2 − 2x − 6 2 3. Simplify x2x−4 4. Solve 2x−3 x+1 x+1 x+2 ≤ 1 and express the solution in interval notation. 5. True or False: √ 6. Rationalize − 3−xy x 4+h−2 h =3−y and simplify the result. 7. Given f (x) = 3x2 − 3x + 5, evaluate the following expressions. Expand and simplify when possible. a. f (x + h) b. f (x) − f (x + h) c. f (x)−f (x+h) h 8. A box with no top is to be created from a 16 x 25 piece of cardboard by cutting out equal squares from all four corners and folding up the sides. Write an expression for the volume of the box, V (x). 9. Derive the quadratic formula. 1 Solutions 1. Simplify the following expressions: a. 163/4 b. c. d. √ 1 3 200 − +3− 161/4 3 = 23 = 8 √ 8 √ 100 · 2 − 5 6 √ √ √ √ 4 · 2 = 10 2 − 2 2 = 8 2 2 18 5 15 5 + − = = 6 6 6 6 2 3 π/2 3· 2 6 = π π 2. Factor completely: a. x2 − 7x + 10 (x − 5) (x − 2) b. 2x3 + 6x2 − 36x 2x x2 + 3x − 18 = 2x (x + 6) (x − 3) c. 3x2 − 11x − 4 a · c = (3)(−4) = −12 −12 = (−12)(1) −11 = −12 + 1 3x2 − 11x − 4 = 3x2 − 12x + x − 4 = 3x2 − 12x + (x − 4) = 3x (x − 4) + (x − 4) = (x − 4) (3x + 1) 2 d. 4x − 25 (2x − 5) (2x + 5) e. x3 + 3x2 − 2x − 6 x3 + 3x2 + (−2x − 6) = x2 (x + 3) + (−2) (x + 3) = (x + 3) x2 − 2 √ √ = (x + 3) x − 2 x + 2 2 3. Simplify x2 x2 −4 − x+1 x+2 x = −1 = = x2 x+1 − (x − 2)(x + 2) x + 2 x2 (x + 1)(x − 2) − (x − 2)(x + 2) (x + 2)(x − 2) = x2 − (x + 1)(x − 2) (x + 2)(x − 2) = x2 − (x2 − x − 2) (x + 2)(x − 2) x2 − x2 + x + 2 (x − 2)(x + 2) = = x+2 (x − 2)(x + 2) = 4. Solve 2x−3 x+1 1 x−2 ≤ 1 and express the solution in interval notation. 2x − 3 =1 x+1 2x − 3 = x + 1 x = 4 critical value Choose test values x = 0 and x = 5. x = −1 x = 0 x=4 x=5 -1 0 1 2 3 4 (−∞, −1) 5. True or False: FALSE 3−xy x =3−y 3 [ 5 (−1, 4] 6 7 8 h and simplify the result. 6. Rationalize √4+h−2 √ h 4+h+2 √ √ 4+h−2 4+h+2 √ h 4+h+2 = √ √ √ 2 4+h +2 4+h−2 4+h−4 √ h 4+h+2 = 4+h−4 √ h 4+h+2 = h √ = 4+h+2 7. Given f (x) = 3x2 − 3x + 5, evaluate the following expressions. Expand and simplify when possible. a. f (x + h) f (x + h) = 3(x + h)2 − 3(x + h) + 5 = 3(x2 + 2xh + h2 ) − 3x − 3h + 5 = 3x2 + 6xh + 3h2 − 3x − 3h + 5 b. f (x) − f (x + h) f (x) − f (x + h) = 3x2 − 3x + 5 − 3x2 + 6xh + 3h2 − 3x − 3h + 5 = 3x2 − 3x + 5 − 3x2 − 6xh − 3h2 + 3x + 3h − 5 = −6xh − 3h2 + 3h c. f (x)−f (x+h) h f (x) − f (x + h) −6xh − 3h2 + 3h = h h = h (−6x − 3h + 3) h = −6x − 3h + 3 4 8. A box with no top is to be created from a 16 x 25 piece of cardboard by cutting out equal squares from all four corners and folding up the sides. Write an expression for the volume of the box, V (x). x 25 − 2x x x 16 − 2x x x x 16 V = lwh = (16 − 2x)(25 − 2x)(x) V (x) = 400x − 32x2 − 50x2 + 4x3 V (x) = 400x − 82x + 4x2 5 25 9. Derive the quadratic formula. ax2 + bx + c = 0 By completing the squre, we can arrive at the Quadratic Formula. b c x2 + x + = 0 a a b c x2 + x = − a a 2 2 b b2 1 b = = 2 2 a 2a 4a b b2 b2 c x2 + x + 2 = 2 − a 4a 4a a 2 2 b b − 4ac x+ = 2a 4a2 r b2 − 4ac b =± x+ 2a 4a2 √ b2 − 4ac b x+ =± 2a 2a √ 2 b − 4ac b x=− ± 2a 2a √ 2 −b ± b − 4ac x= 2a 6
© Copyright 2026 Paperzz