Slide 1 ___________________________________ THE CHAIN RULE • If f and g are both differentiable and F = f g is the composite function defined by F(x) = f(g(x)), then F is differentiable and F’ is given by the product F’(x) = f’(g(x)) g’(x) ___________________________________ ___________________________________ “OUTSIDE-INSIDE” RULE Note: we differentiate the outer function f [at the inner function g(x)] and then multiply by the derivative of the inner function. ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 Ex. Differentiate: F(x) = ___________________________________ x2 +1 F(x) = (x2 + 1)1/2 • What is the outer function? x2 + 1 ___________________________________ derivative of the inside inside left alone F’(x) = ___________________________________ square root function What is the inside function? 1 − 1 F’(x) = (x2 +1) 2 ( 2x) ● 2 x ___________________________________ ( x 2 + 1) ___________________________________ ___________________________________ ___________________________________ Slide 3 ___________________________________ Ex. Differentiate: y = sin(4x) • What is the outside function? sine function What is the inside function? y’ = cos(4x) derivative of outer function 4 ___________________________________ 4x derivative of inner function ___________________________________ at the inner function ___________________________________ y’ = 4cos(4x) ___________________________________ ___________________________________ ___________________________________ Slide 4 ___________________________________ Ex. Find the derivative. y = sin(xcosx) • y’ = cos(xcosx) • (cosx – xsinx) derivative of outside function inside function left alone ___________________________________ derivative of inside function (use product rule) ___________________________________ y’ = (cosx – xsinx)[cos(xcosx)] ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 5 ___________________________________ Example: Find the derivative y = tan2(3θ) note: tan2 (3θ) = [tan(3θ)]2 • y’ = 2[tan(3θ)] • derivative of outer function (inner function unchanged ) y’ = ___________________________________ sec2(3θ) • 3 derivative of inner function ___________________________________ 6tan(3θ)sec2(3θ) ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 6 ___________________________________ Find the derivatives a) f(x) = sin(x2 + x) ___________________________________ f’(x) = cos(x2 + x)·(2x + 1) = (2x + 1)cos(x2 + x) b) h(x) = cos2x ___________________________________ h’(x) = -sin(2x)·2 = -2sin(2x) ___________________________________ c) g(t) = tan(5 – sin2t) g’(t) = -2cos2t·sec2(5 – sin2t) ___________________________________ ___________________________________ ___________________________________ Slide 7 ___________________________________ Find the derivative: a) y'= y= sin2 x cosx u=sin2 x; u'=2sinxcosx v=cosx; v'=-sinx cosx ⋅ 2sinxcosx - sin2 x ⋅ ( − sin x) cos2 x sinx(2cos2 x + sin2 x) cos2 x = = = ___________________________________ 2cos2 xsinx + sin3 x cos2 x ___________________________________ sinx(2cos2 x+1-cos2 x) cos2 x sinx(cos2 x+1) = sin x ⎛ cos2 x + 1 ⎞ = sinx 1+sec 2 x ( ) ⎜ 2 2 ⎟ ⎝ cos x cos x ⎠ cos2 x ___________________________________ ___________________________________ ___________________________________ ___________________________________
© Copyright 2026 Paperzz