Quiz 1 Friday, August 30 2 1 Find the antiderivative of x23 − 2 sin( x2 ) + sec 3(2x) Solution. First, we can simplify the expression to get 2 2 − 2 sin( x2 ) + sec 3(2x) = 2x−3 − 2 sin( x2 ) + 13 sec2 (2x). x3 Method 1: −3+1 Note that the antiderivative of x−3 is x−3+1 + c = the antiderivative of sin( x2 ) is − cos( x2 ) 1 2 +c = x−2 + c, −2 x −2 cos( 2 ) + c and the anti- derivative of sec2 (2x) is tan(2x) + c. 2 2 2 So the antiderivative of x3 − 2 sin( x2 ) + sec 3(2x) is −2 +c 2 · x−2 − 2 · (−2 cos( x2 )) + 13 · tan(2x) 2 which can be simplified as x 1 −x−2 + 4 cos( )) + tan(2x) + c. 2 6 One can verify the answer by taking the derivative of −x−2 +4 cos( x2 ))+ 1 tan(2x) + c to get 6 x 1 d − x−2 + 4 cos( )) + tan(2x) + c dx 2 6 1 x 1 = − · (−2)x−3 + 4 · (− cos( ) · ) + sec2 (2x) · 2 + 0 2 2 6 x 1 = 2x−3 − 2 cos( ) + sec2 (2x). 2 3 Method 2: We can use indefinite integral to find the antiderivative of a function. 2 Since x23 − 2 sin( x2 ) + sec 3(2x) = 2x−3 − 2 sin( x2 ) + 13 sec2 (2x), we have Z x sec2 (2x) 2 − 2 sin( ) + dx x3 2 3 Z x 1 2x−3 − 2 sin( ) + sec2 (2x))dx = 2 3 Z Z Z x 1 −3 = 2 x dx − 2 sin( )dx + sec2 (2x)dx 2 3 x −2 ) cos( x 1 tan(2x) =2· − 2 · (− 1 2 ) + · +c −2 3 2 2 x 1 = −x−2 + 4 cos( )) + tan(2x) + c 2 6 So the antiderivative of x23 − 2 sin( x2 ) + −x−2 + 4 cos( x2 )) + 16 tan(2x) + c. sec2 (2x) 3 MATH 1760 : page 1 of 1 is
© Copyright 2026 Paperzz