AstroTalk:BehindthenewsheadlinesofNovember2016 RicharddeGrijs(何锐思) (KavliInstituteforAstronomyandAstrophysics,PekingUniversity) PurewaterinaJapanesemineofferscluestothenatureofsupernova explosions OnlythreeorfoursupernovaexplosionshappeninourMilkyWaygalaxyevery century.Supernovaearesuper-energeticeventsthatreleaseneutrinosatthe speedoflight.Neutrinosareneutralparticleswithnear-zeromassproduced abundantlyintheBigBang,byourSun,andbycosmicraysstrikingtheEarth’s atmosphere.Theyaresotinyandinteractsoweaklythateverysecond,trillions ofthemmanagetopassthroughhumanbodieswithoutanyonenoticing. StudyingthemcanrevealdetailsabouthowstarsintheUniverse,includingour Sun,work. Akilometreunderground,beneathMountIkenoyama,insideanoldmining tunnelinKamioka,centralJapan,scientistshavebuilta50,000-tonnetankof ultra-purewaterinsideagiganticcylinderfullofso-calledphotomultipliertubes. ThisistheSuper-Kamiokandeexperiment,oneofwhosemajorobjectivesisthe detectionofneutrinosthatcomefromnearbysupernovae.Sincesupernova explosionsoccursoinfrequently,themembersoftheinternationalSuperKamiokandescientificcollaborationwanttobepreparedforoneoftheserare phenomenaandhavebuilta‘monitor’thatisconstantlyonthelookoutfora nearbysupernovatoinformthescientificcommunityofthearrivalofthese mysteriousparticles,whichcanoffercrucialinformationaboutthecollapseof starsandtheformationofblackholes.Thenewcomputersystemwasinstalled andswitchedonthismonth. “Itisacomputersystemthatanalysestheeventsrecordedinthedepthsof theobservatoryinrealtimeand,ifitdetectsabnormallylargeflowsof neutrinos,itquicklyalertsthephysicistswatchingfromthecontrolroom,” LuisLabarga,aphysicistattheAutonomousUniversityofMadrid(Spain) andamemberofthecollaboration,explained. Thankstothisneutrinomonitor,expertscanassessthesignificanceofthesignal withinminutesandseewhetheritactuallyoriginatesfromanearbysupernova, insidetheMilkyWay.Ifitis,theycanissueanearlywarningtoallinterested researchcentresaroundtheworld,whichtheyprovidewithinformationandthe celestialcoordinatesofthesourceofneutrinos.Theycanthenpointalloftheir opticalobservationinstrumentstowardsit,sincetheelectromagneticsignal arriveswithadelay. “Supernovaexplosionsareoneofthemostenergeticphenomenainthe Universeandmostofthisenergyisreleasedintheformofneutrinos,”says Labarga.“Thisiswhydetectingandanalysingneutrinosemittedinthese cases,otherthanthosefromtheSunorothersources,isveryimportantfor understandingthemechanismsintheformationofneutronstars—atypeof stellarremnant—andblackholes.” “Furthermore,”headds“duringsupernovaexplosionsanenormousnumber ofneutrinosisgeneratedinanextremelysmallspaceoftime—afew seconds—andthiswhyweneedtobeready.Thisallowsustoresearchthe fundamentalpropertiesofthesefascinatingparticles,suchastheir interactions,theirhierarchyandtheabsolutevalueoftheirmass,theirhalflife,andsurelyotherpropertiesthatwestillcannotevenimagine.” LabargasaysthattheSuper-Kamiokandeispermanentlyreadytodetect neutrinos,exceptforessentialcalibrationorrepairintervals.Anydaycouldtake usbysurprise. ButtheSuper-Kamiokandedetectorisnotjustlookingforsupernovaeinour ownimmediatevicinity.AsecondinternationalteamofresearchersinJapanis gettingreadytopoweruptheneutrinodetectorbyaddingasinglemetal,which willturnitintotheworld’sfirstdetectorcapableofanalysingexplodingstars beyondtheimmediateneighbourhoodoftheMilkyWay. Allsupernovaneutrinosthathavebeendetectedtodatehavecomefromthe immediatevicinityofourGalaxy.Nooneknowswhetherneutrinosfromolder galaxiesatgreatdistancesactthesamewayasneutrinosclosetoEarth,or whetherthereisacompletelynewclassoftinyparticlesyettobediscovered. ExperimentalphysicistMarkVaginsoftheKavliInstituteforthePhysicsand MathematicsoftheUniversenearTokyo(Japan)andOhioStateUniversity(USA) theoristJohnBeacomwantedtoseeifitwerepossibletoimproveSuperKamiokande.Oneoftheirideaswastoaddtherare-earthmetalgadoliniumto thedetector’swatertank,takingadvantageofthegadoliniumnuclei’sabilityto captureneutrons.Ifaneutronreleasedfromaneutrinointeractionwerelocated nearby,itwouldbeabsorbedbythegadolinium,whichwouldreleasetheextra energybycreatingaflashoflight:asignalthatcouldbedetectedbythevery sensitivemeasuringequipment.Butbeforeanytestscouldberun,thetwo researchersneededtofindoutiftheirideamadescientificsenseandpredict whatcomplicationstheymightneedtoovercome. First,waterinsidethedetectorwouldneedtobetransparent.Neutrinosinteract withwater,creatingtinyflashesoflightthatarepickedupbythe photomultipliertubesliningthewallsofthetank.Ifgadoliniummadethewater murky,itwouldpreventthephototubesfromdetectinganylight.Second,the gadoliniumneededtobeuniformlyspreadwithinthetanksoitcouldbeclose enoughtoaneutrino–waterinteractiontomagnifyitssignal. “Thesetwocriteria,uniformityandtransparency,meanthegadolinium mustbeinducedtodissolve,”saysDrVagins.“We’vespentovertenyears figuringouthowtodoit.” Gadoliniumisaby-productoftheextractionofotherrare-earthmetals,someof whichareusedtoproducethecoloursinflat-screenTVs.Thismakesgadolinium affordablesothatDrVaginsandhisteamwillbeabletopurchasethe100tonnes neededtohelpSuper-Kamiokandedetectneutrinosfromdistantsupernovae. Thepurewaterinsideitsgianttankactsasatargetforarangeofparticlesbeing studiedtodayincludingneutrinos,resultinginatinylightflashthatispickedup bysensitivephototubesliningthewalls.In1987,Kamiokande,theoriginal experimentinthesamemine,recordedthefirstsupernovaneutrinos.The experimentwasheadedbytheUniversityofTokyo’sMasatoshiKoshiba,who wasawardedaNobelPrizeinPhysicsin2002.In1998,KamiokandeandSuperKamiokandeprovedneutrinoshavemass,resultinginthe2015NobelPrizein PhysicsforTakaakiKajita,whohadbeenagraduatestudentofDrKoshiba. Infact,the2015NobelPrizeinPhysicswassharedbyArthurB.McDonald,the leaderoftheSudburyNeutrinoObservatory(SNO),andTakaakiKajita“forthe discoveryofneutrinooscillations,whichshowsthatneutrinoshavemass.” Thediscoveryofneutrinooscillationsandmasshasprofoundlyaffectedour understandingoftheseelusiveparticles,theirroleinthetheoretical underpinningofphysics,andtheevolutionoftheUniverse.Thesuccessof nuclear-physicscalculationsofsolarenergygenerationhasbeendramatically confirmed.Thediscovery,moreover,opensnewdoorstoanunderstandingof suchbasicquestionsaswhytheUniversecontainsmorematterthanantimatter, andwhatpropertiesanewandsuccessfulstandardmodelmusthave. Neutrinoshavelongbeenthoughttobemassless,apredictionofthestandard modelofparticlesandfields.Beginninginthe1960s,RaymondDavisJr.beganto measurethefluxofneutrinosfromtheSun.Hisexperiment—andsubsequent onesatKamiokandeinJapan,BaksaninRussia,andGranSassoinItaly—found thatthefluxwasmuchsmallerthanexpected.In1985,HerbertChenobserved thatifneutrinososcillated,theywouldstillarriveatEarthbutin‘flavours’ undetectableintheDavisexperiment,whichwasdesignedforelectron neutrinos.Therearethreeflavours—electron,mu,andtau—buttheSuncanonly produceelectronneutrinos.Heproposedadetectorbasedonheavywater (wherethehydrogenatomisreplacedbydeuterium)thatcoulddetectall flavoursequally. TheresultwastheSNOdetector,andin2001SNOshowedthattwo-thirdsofthe electronneutrinoshadconvertedtonon-electronflavours.Meanwhile,in1998 Super-Kamiokandehadfoundasimilareffectinwhichmuneutrinosproducedin theatmosphereconvertedtoanon-electronflavour.Theseconversionscanonly occurviaaquantum-mechanicaleffectthatrequiresneutrinomasstobenonzero. Theconfirmationofthesolar-neutrinofluxpredictionsresolvedaproblemthat hadcontinuedtobafflephysicistsformorethan30yearsandshowsthatnuclear processesintheSun’scoreareunderstoodveryaccurately.Thediscoveryof neutrinomassforcesarevisioninourbasicmodelofparticlesandfields.New theoriesarebeingdeveloped,butadecisivechoicecannotbemadewithout moreinformation.Experimentalworktodeterminetheactualmass(whichisnot givenbyoscillations),toanswerthequestionofwhetherneutrinosand antineutrinosarethesameparticle,andtoseeifneutrinosrespectanatural symmetry,thereversaloftime,needtobecarriedout.Thediscoveryalsomeans thatneutrinosareapartofthedarkmatterintheUniverse,butonlyasmallpart. Nevertheless,theirabundanceandsmallmassmeanthattheyaffecttheform andevolutionofthelargeststructuresandclustersofgalaxiesintheUniverse. Wehavecomealongwayfromthehumblebeginningsofneutrinoresearch. Indeed,ithastakenovereightdecadesforphysiciststoreachtheircurrent-best understandingofthephysicalnatureoftheneutrino.Hereisatimelineof ongoingeffortstounderstandtheneutrino: - 1930:Austrian-bornquantum-physicspioneerWolfgangPauli hypothesisestheexistenceofanas-yet-undetected,electricallyneutral particle,whichItalianphysicistEnricoFermilaterdubsthe‘neutrino.’ However,theparticleishardtotrackdownsinceitdoesnotinteract stronglywithanyothermatterintheUniverse,shootingundeterred throughourbodiesandtheEarthitself. - 1956:TwoAmericanscientists,FrederickReinesandClydeCowan,report thefirsthardevidenceoftheexistenceofneutrinos. - 1988:Again,twoAmericanresearchers,LeonLedermanandMelvin Schwartz,aswellasGerman-bornscientistJackSteinbergerreceivethe NobelPrizeinPhysicsforuncovering—inthe1960s—theexistenceofat leasttwokindsofneutrino.Theirworkwasakeycontributiontothe StandardModelofparticlephysics,whichseekstoexplainhowthe Universeisputtogether. - 1995:Morethan20yearsafterCowan’sdeath,Reinesisawardedthe NobelPrizeinPhysicsfortheirdiscovery,whichusedafissionreactor (whichsplitsatomicnucleiintosmallerparticles)topumpoutneutrinos andasensitivedetectortospotthem.HesharedtheawardwithAmerican MartinPerlwhounearthedanothertypeofparticle,whichsuggestedthe existenceofathirdneutrinoflavour. - 1998:Kajitaandateamobservethatneutrinoscanswitchfromonetype toanother,inaprocesscalled‘oscillation,’astheytravelbetweenthe atmosphereandtheSuper-Kamiokandeundergroundparticledetector. Thechangewasdrastic—likehaving“anorangeinyourhandwhich suddenlyturnsintoanapple,”OxfordUniversityneutrinoresearcher AlfonsWeberoncesaidinamediainterview. - 1999:McDonaldannouncesthatneutrinosfromtheSunwerenot ‘disappearing,’aslongsuspected,butchangingformbeforetheyarriveat theSNOobservatoryinOntario,Canada. - 2002:RaymondDavisJr.MasatoshiKoshibareceivetheNobelPrizein PhysicsforthefirstdetectionofneutrinosfrombeyondEarth— originatingintheSunandanexplodingstar. - 2011:Europeanscientistscauseastormbypublishingexperimental resultsshowingthatneutrinoscantravelfasterthanthespeedoflight— challengingAlbertEinstein’s1905TheoryofSpecialRelativity. - 2012:Thescientistsadmittheirexperimentwasflawedandreaffirmthat neutrinos—likeeverythingelse—areboundbytheuniversalspeedlimit. Whatnext?Scientistsbelievetheremaybeafourthtypeofneutrino,andthe huntison.Measurementshaveyieldedslightlyfewerneutrinosthancalculations saythereshouldbe,whichmightmeantheyaretransformingintoafourth,asyet-undetectedflavour. Figure1:TheSuper-KamiokandeexperimentislocatedattheKamiokaObservatory,1,000 metresbelowgroundinamineneartheJapanesecityofKamioka.(Credit:KamiokaObservatory, InstituteforCosmicRayResearch,TheUniversityofTokyo,Japan) Figure2:Scientistsstandonaplatformattheworld’slargestundergroundneutrinodetector Super-Kamiokande.(Credit:KavliInstituteforthePhysicsandMathematicsoftheUniverse,Japan) Figure3:CompletionoftheSNOdetector:Atechniciancrouchesinsidethe12-metre-diameter acrylicvessel,soclearitcanhardlybeseen.Surroundinghimarealmost10,000 photomultipliers,sensitivedetectorsofthelightflashesproducedbyneutrinointeractionsinthe heavywaterwithwhichthevesselwillbefilled.(Credit:LawrenceBerkeleyNationalLaboratory, USA) Figure4:ScientistenteringtheSNOdetectorforupgradeworktotransformthisexperimentinto SNO+.(Credit:TheSNO+collaboration;JamesSinclair,UniversityofSussex)
© Copyright 2026 Paperzz