QUADRATIC FORMULA x= −b ± √ b2 − 4ac 2a Original equation: 2x2 − 3x − 15 = 5 Step 1: Set the equation equal to zero. Subtract −5 from both sides 2x2 − 3x − 15 − 5 = 5 − 5 2x2 − 3x − 20 = 0 Step 2: Identify a, b, c. Use the standard form of a quadratic equation: ax2 + bx + c = 0 a = 2, Step 3: b = −3, c = −20 Use the Quadratic Formula √ 3a: Substitute and solve for b2 − 4ac √ = pb2 − 4ac = p(−3)2 − 4(2)(−20) = √ 9 − (−160) = 169 = 13 So the √ b2 − 4ac = 13 3b: Calculate 2a = 2a = 2(2) = 4 So 2a = 4 3c: Substitute steps 3a & 3b into the quadratic formula. 3c: Next, substitute for −b then simplify the fraction. x= x= −b ± √ b2 − 4ac −(−3) ± 13 3 ± 13 = = 2a 4 4 3 + 13 =⇒ x = 4 4 x= 3 − 13 −5 =⇒ x = 4 2 ! Assignment 1. x2 + 2x − 3 = 0 2. 2x2 − 3x − 15 = 5 3. 5x2 = 80 4. 9x2 − 7x − 4 = 0 5. 10x2 + 4x − 16 = x2
© Copyright 2026 Paperzz