Polynomials: Multiplication Joseph Lee Metropolitan Community College Joseph Lee Polynomials: Multiplication Example 1.a. Multiply. 3x(5x 2 ) Joseph Lee Polynomials: Multiplication Example 1.a. Multiply. 3x(5x 2 ) Solution. 3x(5x 2 ) = Joseph Lee Polynomials: Multiplication Example 1.a. Multiply. 3x(5x 2 ) Solution. 3x(5x 2 ) = 15x 3 Joseph Lee Polynomials: Multiplication Example 1.b. Multiply. −4x 3 (6x 2 ) Joseph Lee Polynomials: Multiplication Example 1.b. Multiply. −4x 3 (6x 2 ) Solution. −4x 3 (6x 2 ) = Joseph Lee Polynomials: Multiplication Example 1.b. Multiply. −4x 3 (6x 2 ) Solution. −4x 3 (6x 2 ) = − 24x 5 Joseph Lee Polynomials: Multiplication Definition: Distributive Property a(b + c) = ab + ac Joseph Lee Polynomials: Multiplication Example 2.a. Multiply. 3x(x + 7) Joseph Lee Polynomials: Multiplication Example 2.a. Multiply. 3x(x + 7) Solution. 3x(x + 7) = Joseph Lee Polynomials: Multiplication Example 2.a. Multiply. 3x(x + 7) Solution. 3x(x + 7) = 3x(x) + 3x(7) = Joseph Lee Polynomials: Multiplication Example 2.a. Multiply. 3x(x + 7) Solution. 3x(x + 7) = 3x(x) + 3x(7) = 3x 2 + 21x Joseph Lee Polynomials: Multiplication Example 2.b. Multiply. −2x 2 (3x − 5) Joseph Lee Polynomials: Multiplication Example 2.b. Multiply. −2x 2 (3x − 5) Solution. −2x 2 (3x − 5) = Joseph Lee Polynomials: Multiplication Example 2.b. Multiply. −2x 2 (3x − 5) Solution. −2x 2 (3x − 5) = − 2x 2 (3x) − 2x 2 (−5) = Joseph Lee Polynomials: Multiplication Example 2.b. Multiply. −2x 2 (3x − 5) Solution. −2x 2 (3x − 5) = − 2x 2 (3x) − 2x 2 (−5) = − 6x 3 + 10x 2 Joseph Lee Polynomials: Multiplication Example 2.c. Multiply. 4x(x 2 − 3x + 4) Joseph Lee Polynomials: Multiplication Example 2.c. Multiply. 4x(x 2 − 3x + 4) Solution. 4x(x 2 − 3x + 4) = Joseph Lee Polynomials: Multiplication Example 2.c. Multiply. 4x(x 2 − 3x + 4) Solution. 4x(x 2 − 3x + 4) = 4x(x 2 ) + 4x(−3x) + 4x(4) = Joseph Lee Polynomials: Multiplication Example 2.c. Multiply. 4x(x 2 − 3x + 4) Solution. 4x(x 2 − 3x + 4) = 4x(x 2 ) + 4x(−3x) + 4x(4) = 4x 3 − 12x 2 + 16x Joseph Lee Polynomials: Multiplication Example 2.d. Multiply. −8x 3 (−3x 2 + 7x − 1) Joseph Lee Polynomials: Multiplication Example 2.d. Multiply. −8x 3 (−3x 2 + 7x − 1) Solution. −8x 3 (−3x 2 + 7x − 1) = Joseph Lee Polynomials: Multiplication Example 2.d. Multiply. −8x 3 (−3x 2 + 7x − 1) Solution. −8x 3 (−3x 2 + 7x − 1) = − 8x 3 (−3x 2 ) − 8x 3 (7x) − 8x 3 (−1) = Joseph Lee Polynomials: Multiplication Example 2.d. Multiply. −8x 3 (−3x 2 + 7x − 1) Solution. −8x 3 (−3x 2 + 7x − 1) = − 8x 3 (−3x 2 ) − 8x 3 (7x) − 8x 3 (−1) = 24x 5 − 56x 4 + 8x 3 Joseph Lee Polynomials: Multiplication Example 2.e. Multiply. (3x 2 − x + 8)(2x) Joseph Lee Polynomials: Multiplication Example 2.e. Multiply. (3x 2 − x + 8)(2x) Solution. (3x 2 − x + 8)(2x) = Joseph Lee Polynomials: Multiplication Example 2.e. Multiply. (3x 2 − x + 8)(2x) Solution. (3x 2 − x + 8)(2x) = 3x 2 (2x) − x(2x) + 8(2x) = Joseph Lee Polynomials: Multiplication Example 2.e. Multiply. (3x 2 − x + 8)(2x) Solution. (3x 2 − x + 8)(2x) = 3x 2 (2x) − x(2x) + 8(2x) = 6x 3 − 2x 2 + 16x Joseph Lee Polynomials: Multiplication Example 3.a. Multiply. (x − 2)(x + 3) Joseph Lee Polynomials: Multiplication Example 3.a. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = Joseph Lee Polynomials: Multiplication Example 3.a. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = (x − 2)(x) + (x − 2)(3) = Joseph Lee Polynomials: Multiplication Example 3.a. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = (x − 2)(x) + (x − 2)(3) = x 2 − 2x + 3x − 6 = Joseph Lee Polynomials: Multiplication Example 3.a. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = (x − 2)(x) + (x − 2)(3) = x 2 − 2x + 3x − 6 = x2 + x − 6 Joseph Lee Polynomials: Multiplication Definition: FOIL FOIL is a procedure for multiplying two binomials. FOIL stands for First - Outer - Inner - Last. (a + b)(c + d) = ac + ad + bc + bd Joseph Lee Polynomials: Multiplication Example 3.b. Multiply. (x − 2)(x + 3) Joseph Lee Polynomials: Multiplication Example 3.b. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = Joseph Lee Polynomials: Multiplication Example 3.b. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = x 2 + 3x − 2x − 6 = Joseph Lee Polynomials: Multiplication Example 3.b. Multiply. (x − 2)(x + 3) Solution. (x − 2)(x + 3) = x 2 + 3x − 2x − 6 = x2 + x − 6 Joseph Lee Polynomials: Multiplication Example 4.a. Multiply. (2x − 3)(x + 4) Joseph Lee Polynomials: Multiplication Example 4.a. Multiply. (2x − 3)(x + 4) Solution. (2x − 3)(x + 4) = Joseph Lee Polynomials: Multiplication Example 4.a. Multiply. (2x − 3)(x + 4) Solution. (2x − 3)(x + 4) = 2x 2 + 8x − 3x − 12 = Joseph Lee Polynomials: Multiplication Example 4.a. Multiply. (2x − 3)(x + 4) Solution. (2x − 3)(x + 4) = 2x 2 + 8x − 3x − 12 = 2x 2 + 5x − 12 Joseph Lee Polynomials: Multiplication Example 4.b. Multiply. (4x − 3)(3x − 7) Joseph Lee Polynomials: Multiplication Example 4.b. Multiply. (4x − 3)(3x − 7) Solution. (4x − 3)(3x − 7) = Joseph Lee Polynomials: Multiplication Example 4.b. Multiply. (4x − 3)(3x − 7) Solution. (4x − 3)(3x − 7) = 12x 2 − 28x − 9x + 21 = Joseph Lee Polynomials: Multiplication Example 4.b. Multiply. (4x − 3)(3x − 7) Solution. (4x − 3)(3x − 7) = 12x 2 − 28x − 9x + 21 = 12x 2 − 37x + 21 Joseph Lee Polynomials: Multiplication Example 4.c. Multiply. (x + 4)(y + 5) Joseph Lee Polynomials: Multiplication Example 4.c. Multiply. (x + 4)(y + 5) Solution. (x + 4)(y + 5) = Joseph Lee Polynomials: Multiplication Example 4.c. Multiply. (x + 4)(y + 5) Solution. (x + 4)(y + 5) = xy + 5x + 4y + 20 Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (x − 3y )(2x + 5y ) Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (x − 3y )(2x + 5y ) Solution. (x − 3y )(2x + 5y ) = Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (x − 3y )(2x + 5y ) Solution. (x − 3y )(2x + 5y ) = 2x 2 + 5xy − 6xy − 15y 2 = Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (x − 3y )(2x + 5y ) Solution. (x − 3y )(2x + 5y ) = 2x 2 + 5xy − 6xy − 15y 2 = 2x 2 − xy − 15y 2 Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (7x − y )(3x + y ) Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (7x − y )(3x + y ) Solution. (7x − y )(3x + y ) = Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (7x − y )(3x + y ) Solution. (7x − y )(3x + y ) = 21x 2 + 7xy − 3xy − y 2 = Joseph Lee Polynomials: Multiplication Example 4.d. Multiply. (7x − y )(3x + y ) Solution. (7x − y )(3x + y ) = 21x 2 + 7xy − 3xy − y 2 = 21x 2 + 4xy − y 2 Joseph Lee Polynomials: Multiplication Example 4.e. Multiply. 1 x− 2 1 x− 3 Joseph Lee Polynomials: Multiplication Example 4.e. Multiply. 1 x− 2 1 x− 3 Solution. 1 x− 2 1 x− = 3 Joseph Lee Polynomials: Multiplication Example 4.e. Multiply. 1 x− 2 1 x− 3 Solution. 1 x− 2 1 1 1 1 x− = x2 − x − x + 3 2 6 3 = Joseph Lee Polynomials: Multiplication Example 4.e. Multiply. 1 x− 2 1 x− 3 Solution. 1 x− 2 1 1 1 1 x− = x2 − x − x + 3 2 6 3 2 3 1 = x2 − x − x + 6 6 6 = Joseph Lee Polynomials: Multiplication Example 4.e. Multiply. 1 x− 2 1 x− 3 Solution. 1 x− 2 1 1 1 1 x− = x2 − x − x + 3 2 6 3 2 3 1 = x2 − x − x + 6 6 6 5 1 = x2 − x + 6 6 Joseph Lee Polynomials: Multiplication Example 5.a. Multiply. (x + 3)2 Joseph Lee Polynomials: Multiplication Example 5.a. Multiply. (x + 3)2 Solution. (x + 3)2 = Joseph Lee Polynomials: Multiplication Example 5.a. Multiply. (x + 3)2 Solution. (x + 3)2 = (x + 3)(x + 3) = Joseph Lee Polynomials: Multiplication Example 5.a. Multiply. (x + 3)2 Solution. (x + 3)2 = (x + 3)(x + 3) = x 2 + 3x + 3x + 9 = Joseph Lee Polynomials: Multiplication Example 5.a. Multiply. (x + 3)2 Solution. (x + 3)2 = (x + 3)(x + 3) = x 2 + 3x + 3x + 9 = x 2 + 6x + 9 Joseph Lee Polynomials: Multiplication Example 5.b. Multiply. (3x − 2)2 Joseph Lee Polynomials: Multiplication Example 5.b. Multiply. (3x − 2)2 Solution. (3x − 2)2 = Joseph Lee Polynomials: Multiplication Example 5.b. Multiply. (3x − 2)2 Solution. (3x − 2)2 = (3x − 2)(3x − 2) = Joseph Lee Polynomials: Multiplication Example 5.b. Multiply. (3x − 2)2 Solution. (3x − 2)2 = (3x − 2)(3x − 2) = 9x 2 − 6x − 6x + 4 = Joseph Lee Polynomials: Multiplication Example 5.b. Multiply. (3x − 2)2 Solution. (3x − 2)2 = (3x − 2)(3x − 2) = 9x 2 − 6x − 6x + 4 = 9x 2 − 12x + 4 Joseph Lee Polynomials: Multiplication Example 5.c. Multiply. (4x + 5y )2 Joseph Lee Polynomials: Multiplication Example 5.c. Multiply. (4x + 5y )2 Solution. (4x + 5y )2 = Joseph Lee Polynomials: Multiplication Example 5.c. Multiply. (4x + 5y )2 Solution. (4x + 5y )2 = (4x + 5y )(4x + 5y ) = Joseph Lee Polynomials: Multiplication Example 5.c. Multiply. (4x + 5y )2 Solution. (4x + 5y )2 = (4x + 5y )(4x + 5y ) = 16x 2 + 20xy + 20xy + 25y 2 = Joseph Lee Polynomials: Multiplication Example 5.c. Multiply. (4x + 5y )2 Solution. (4x + 5y )2 = (4x + 5y )(4x + 5y ) = 16x 2 + 20xy + 20xy + 25y 2 = 16x 2 + 40xy + 25y 2 Joseph Lee Polynomials: Multiplication Example 6.a. Multiply. (a + b)2 Joseph Lee Polynomials: Multiplication Example 6.a. Multiply. (a + b)2 Solution. (a + b)2 = Joseph Lee Polynomials: Multiplication Example 6.a. Multiply. (a + b)2 Solution. (a + b)2 = (a + b)(a + b) = Joseph Lee Polynomials: Multiplication Example 6.a. Multiply. (a + b)2 Solution. (a + b)2 = (a + b)(a + b) = a2 + ab + ab + b 2 = Joseph Lee Polynomials: Multiplication Example 6.a. Multiply. (a + b)2 Solution. (a + b)2 = (a + b)(a + b) = a2 + ab + ab + b 2 = a2 + 2ab + b 2 Joseph Lee Polynomials: Multiplication Example 6.b. Multiply. (a − b)2 Joseph Lee Polynomials: Multiplication Example 6.b. Multiply. (a − b)2 Solution. (a − b)2 = Joseph Lee Polynomials: Multiplication Example 6.b. Multiply. (a − b)2 Solution. (a − b)2 = (a − b)(a − b) = Joseph Lee Polynomials: Multiplication Example 6.b. Multiply. (a − b)2 Solution. (a − b)2 = (a − b)(a − b) = a2 − ab − ab + b 2 = Joseph Lee Polynomials: Multiplication Example 6.b. Multiply. (a − b)2 Solution. (a − b)2 = (a − b)(a − b) = a2 − ab − ab + b 2 = a2 − 2ab + b 2 Joseph Lee Polynomials: Multiplication Example 7.a. Multiply. (x − 5)(x + 5) Joseph Lee Polynomials: Multiplication Example 7.a. Multiply. (x − 5)(x + 5) Solution. (x − 5)(x + 5) = Joseph Lee Polynomials: Multiplication Example 7.a. Multiply. (x − 5)(x + 5) Solution. (x − 5)(x + 5) = x 2 + 5x − 5x − 25 = Joseph Lee Polynomials: Multiplication Example 7.a. Multiply. (x − 5)(x + 5) Solution. (x − 5)(x + 5) = x 2 + 5x − 5x − 25 = x 2 − 25 Joseph Lee Polynomials: Multiplication Example 7.b. Multiply. (x + 7)(x − 7) Joseph Lee Polynomials: Multiplication Example 7.b. Multiply. (x + 7)(x − 7) Solution. (x + 7)(x − 7) = Joseph Lee Polynomials: Multiplication Example 7.b. Multiply. (x + 7)(x − 7) Solution. (x + 7)(x − 7) = x 2 − 7x + 7x − 49 = Joseph Lee Polynomials: Multiplication Example 7.b. Multiply. (x + 7)(x − 7) Solution. (x + 7)(x − 7) = x 2 − 7x + 7x − 49 = x 2 − 49 Joseph Lee Polynomials: Multiplication Example 7.c. Multiply. (3x + 5y )(3x − 5y ) Joseph Lee Polynomials: Multiplication Example 7.c. Multiply. (3x + 5y )(3x − 5y ) Solution. (3x + 5y )(3x − 5y ) = Joseph Lee Polynomials: Multiplication Example 7.c. Multiply. (3x + 5y )(3x − 5y ) Solution. (3x + 5y )(3x − 5y ) = 9x 2 − 15xy + 15xy − 25y 2 = Joseph Lee Polynomials: Multiplication Example 7.c. Multiply. (3x + 5y )(3x − 5y ) Solution. (3x + 5y )(3x − 5y ) = 9x 2 − 15xy + 15xy − 25y 2 = 9x 2 − 25y 2 Joseph Lee Polynomials: Multiplication Example 8. Multiply. (a + b)(a − b) Joseph Lee Polynomials: Multiplication Example 8. Multiply. (a + b)(a − b) Solution. (a + b)(a − b) = Joseph Lee Polynomials: Multiplication Example 8. Multiply. (a + b)(a − b) Solution. (a + b)(a − b) = a2 − ab + ab − b 2 = Joseph Lee Polynomials: Multiplication Example 8. Multiply. (a + b)(a − b) Solution. (a + b)(a − b) = a2 − ab + ab − b 2 = a2 − b 2 Joseph Lee Polynomials: Multiplication Example 9.a. Multiply. (x + 2)(x 2 − 3x + 2) Joseph Lee Polynomials: Multiplication Example 9.a. Multiply. (x + 2)(x 2 − 3x + 2) Solution. (x + 2)(x 2 − 3x + 2) = Joseph Lee Polynomials: Multiplication Example 9.a. Multiply. (x + 2)(x 2 − 3x + 2) Solution. (x + 2)(x 2 − 3x + 2) = (x + 2)(x 2 ) + (x + 2)(−3x) + (x + 2)(2) = Joseph Lee Polynomials: Multiplication Example 9.a. Multiply. (x + 2)(x 2 − 3x + 2) Solution. (x + 2)(x 2 − 3x + 2) = (x + 2)(x 2 ) + (x + 2)(−3x) + (x + 2)(2) = x 3 + 2x 2 − 3x 2 − 6x + 2x + 4 = Joseph Lee Polynomials: Multiplication Example 9.a. Multiply. (x + 2)(x 2 − 3x + 2) Solution. (x + 2)(x 2 − 3x + 2) = (x + 2)(x 2 ) + (x + 2)(−3x) + (x + 2)(2) = x 3 + 2x 2 − 3x 2 − 6x + 2x + 4 = x 3 − x 2 − 4x + 4 Joseph Lee Polynomials: Multiplication Example 9.b. Multiply. (x − 4)(x 2 + 4x − 5) Joseph Lee Polynomials: Multiplication Example 9.b. Multiply. (x − 4)(x 2 + 4x − 5) Solution. (x − 4)(x 2 + 4x − 5) = Joseph Lee Polynomials: Multiplication Example 9.b. Multiply. (x − 4)(x 2 + 4x − 5) Solution. (x − 4)(x 2 + 4x − 5) = (x − 4)(x 2 ) + (x − 4)(4x) + (x − 4)(−5) = Joseph Lee Polynomials: Multiplication Example 9.b. Multiply. (x − 4)(x 2 + 4x − 5) Solution. (x − 4)(x 2 + 4x − 5) = (x − 4)(x 2 ) + (x − 4)(4x) + (x − 4)(−5) = x 3 − 4x 2 + 4x 2 − 16x − 5x + 20 = Joseph Lee Polynomials: Multiplication Example 9.b. Multiply. (x − 4)(x 2 + 4x − 5) Solution. (x − 4)(x 2 + 4x − 5) = (x − 4)(x 2 ) + (x − 4)(4x) + (x − 4)(−5) = x 3 − 4x 2 + 4x 2 − 16x − 5x + 20 = x 3 − 21x + 20 Joseph Lee Polynomials: Multiplication Example 9.c. Multiply. (x 2 − 1)(x 2 − x − 6) Joseph Lee Polynomials: Multiplication Example 9.c. Multiply. (x 2 − 1)(x 2 − x − 6) Solution. (x 2 − 1)(x 2 − x − 6) = Joseph Lee Polynomials: Multiplication Example 9.c. Multiply. (x 2 − 1)(x 2 − x − 6) Solution. (x 2 − 1)(x 2 − x − 6) = (x 2 − 1)(x 2 ) + (x 2 − 1)(−x) + (x 2 − 1)(−6) = Joseph Lee Polynomials: Multiplication Example 9.c. Multiply. (x 2 − 1)(x 2 − x − 6) Solution. (x 2 − 1)(x 2 − x − 6) = (x 2 − 1)(x 2 ) + (x 2 − 1)(−x) + (x 2 − 1)(−6) = x 4 − x 2 − x 3 + x − 6x 2 + 6 = Joseph Lee Polynomials: Multiplication Example 9.c. Multiply. (x 2 − 1)(x 2 − x − 6) Solution. (x 2 − 1)(x 2 − x − 6) = (x 2 − 1)(x 2 ) + (x 2 − 1)(−x) + (x 2 − 1)(−6) = x 4 − x 2 − x 3 + x − 6x 2 + 6 = x 4 − x 3 − 7x 2 + x + 6 Joseph Lee Polynomials: Multiplication
© Copyright 2026 Paperzz