ln terms of the ultimate. dramond ls the hardest matenal known. lt

IDPE
ln terms of the ultimate. dramond ls the hardest matenal known. lt has the highest thermal conductivity
at room temperatureand severalof its mechanrcalpropertles. such as bulk modulus and critrcal tensile
-slre.s.s
for cleavage,are also the highest known lt has an extremely low coefficrent of friction, rs an
excellent electrical insulator (except for semiconductlng Type llb) and will not corrode. Desprte rts
manY untque propertles. however, diamond is not completely indestructible.lt can be splrt or cleaved
qurte easrlyin certaln drrections.and wrll start to graphrtizeat temperaturesin the region of 873K in
air. Much has been wiltten about the propertres of dlamond, and a list of titles is appended at the
conclusion of thts booklet as a handv and compact reference quide
G E N E R A LP R O P E R T I E S
I Ghemicalcomposition
Diamond is composed of the element carbon. Only
n i t r o g e n a n d b o r o n a r e k n o w n w i t h c e r t a i n t yt o b e i n c o r p o r a t e di n t h e d i a m o n d l a t t i c e .
M a l o r i m p u r i t i e s :N i t r o g e nu, p I o 0 . 2 % i n n a t u r aTl y p e l a
d i a m o n d( s e e S e c t i o nl l b e l o w ) .
'l
N i c k e l ,i r o n .e t c . u p t o O %a s i n c l u s i o n s
i n s y n t h e t i cd i a m o n d ( p p m o r l e s s
r n n a t u r adl i a m o n d )
A l u m i n i u m ,u p t o 1 0 p p m i n n a t u r a l
d i a m o n d B o r o n .u p t o - 0 . 2 5 p . p m . i n
n a t u r a l T y p e l l b a n d 2 7 0 p . pm i n
s p e c iifc a l l y d o p e d T y p e I l b s y n t h e t i c
diamond-now thought to be resp o n s i b l ef o r s e m i c o n d u c t i n gp r o p e r t i e s
of Type llb diarnond Many other
impuritiea
s r ea l s ob e l i e v e dt o b e p r e s e n t
in the formof inclusions.
I n c l u s i o n :s T w e n t y - f i v em i n e r a sl p e c i e s
h a v e b e e n p o s i t i v e l yi d e n tified-see third reference
below(J.W. Harris)
Type lb diamond:
Type lla diamond:
T y p e l l b d i a m o n d:
d ith the
c o n t a i n sp l a t e l e t sa, s s o c i a t e w
n i t r o g e ni m p u r i t y ,t h e e x a c t s t r u c t u r e
of which is not known Most natural
d i a m o n d sa r e o f t h i s t y p e .
A l s o c o n t a i n sn i t r o g e na s a n i m p u r i t y
b u t i n d l s p e r s e ds u b s t i t u t i o n aflo r m .
A l m o s t a l l s y n t h e t i cd i a m o n d sa r e o f
thistype.
E f f e c t i v e l yf r e e o f n i t r o g e n i m p u r i t y .
V e r y r a r e i n n a t u r e ,t h e s e d i a m o n d s
have enhancedoPtical and thermal
p r op er ti e s .
A v e r y p u r et y p e o f d i a m o n dw h i c h h a s
s e m i c o n d u c t i n gp r o p e r t i e s :g e n e r a l l y
b l u e i n c o l o u r .E x t r e m e l rya r ei n n a t u r e .
S e m i c o n d u c t i n g P r o P e r t i e sc a n b e
i m p a r t e d t o s y n t h e t i c c r y s t a l sb y t h e
i n c o r p o r a t i o on f b o r o n .
R e f e r e n c e sR: O B E R T S ORN. .,F O XJ. . J . a n dM A R T I NA. . E . ,P h r l
T r a nR
s o yS o cA . 2 3 2 ,p 4 6 3( 19 3 4 ); C U S T E RJS..F .H . P h y s i c a1.8 ,
p a B 9( 1 9 5 2 ) K
; AISER
. . L . .P h y sR e v1 1 5 .p 8 5 7
W. . a n dB O N DW
T ..a n d
( 19 5 9 ); D Y E RH. . B .e ta l .P h i M
l a s11 ,p 7 6 3( 19 6 5 ); E V A N S
R e s e a r c1h9 7 3 p. 2 .
D A V I E SG, . D i a m o n d
l / o r e . C l a s s i f i c a t i oins b a s e dp r i n c i p a l l yo n o p t i c a lp r o p e r t i e s . F u r t h e rs u b d i v i s i o n sc a n b e m a d e a l m o s t a d
. ., Scienca
R e f e r e n c e sL: I G H T O W L E RES. C
e n d T e c h n o l o goyf
i n l i n i t u m ( i n d e e d .a l m o s t e v e r y d i a m o n d i s d i f f e r e n t
I n d u s t r iD
a li a m o n dV
s .o l 1. p 2 1. E d .J . B u r l sl,n d u s t r i D
a li a m o n d
l n f o r m a t iB
o nu r e a(u1 9 6 7;)C O L L I N A
S . T .a n dW I L L I A M S
A,.W . S . ,
i n s o m e w a y ) b u t t h e a b o v ec l a s s i fc a t i o ni s u n i v e r Diamond Research197/. p 23; HARRIS.J. V!.. lndustrralDiantond
s a l l ya c c e p t e dS o m e d i a m o n d sh a v e b e e n s h o w n t o
R e v i e w , 2 8 ,p 4 5 8 ( 1 9 6 8 ): C H R E N K OR
. . M . . N a t u r e , P h y sS c i e n c e ,
c o n s i s t o f m o r e t h a n o n e I Y p e .e g a c o n ] p l e x l n t e r 2 2 9 .p 16 5 ( 19 7 1) ; S E L t S C f I O PJ, P .F . .D i a m o n dRe s e a r c l1t9 75 . p 3 5 .
w e a v i n go f T y p e I a n d T y p e l l m a t e r i a l .
I I Classification
Type la diamond:
Contains nitrogen as an impurity in
f a i r l y s u b s t a n t i a la m o u n t s ( o f t h e o r d e r
lll Crystal structure
S p a c eG r o u p :C u b i c F d 3 m - O i
(++0 ),
(0 ++),
(+0 + )e+
, il, eZil,
d (0 0 0 ).
A t o mlso c a t eat:
/133\
\TVZ|'
/313\
\4VA).
N e a r e snt e i g h b o udr i s t a n c:e 0 ' 1 5 4 4 5 0+ O ' 0 0 O O 0 5 namt
2 9 8K .
A t o m i cw e i g h t: 1 2 ' 0 1
A t o m i cr a d i u :s0 ' 0 7 7 n m
N u m b eor f a t o m si n a u n i tc e l l :B
N u m b e or f a t o m sm - 3 : 1 ' 7 J x 1 O 2 e
a n d z i r c o n i u m . A t h i g h t e m p e r a t u r e st h e s e w i l l r e a c t
c h e m i c a l l yw i t h d i a m o n dt o f o r m t h e i r r e s p e c t i v ce a r b i d e s .
T h e s e c o n dg r o u p i n c l u d e si r o n ,c o b a l t .m a n g a n e s en. i c k e l
a n d c h r o m i u m ,a n d a l s o t h e p l a t i n u mg r o u p o f m e t a l s .I n
t h e m o l t e n s t a t et h e s e m e t a l sa r e t r u e s o l v e n t sf o r c a r b o n .
, . a n d B O N D ,W . L . ,P h y sR e v 1 1 5 , 4 , p B 5 l
R e f e r e n c e s :K A I S E RW
(1959) ; LONSDALE,K., Phil TransRoy Soc. A24O,p 219 (1941) ,
S K I N N E RB. . J . ,A m e rM i n 4 2 , p 3 9 ( 1 9 5 7 ) .
lV Density
A v e r a goef 3 5 d i a m o n d s( 3 ' 5 1 5 2 4 + O' 0 0 0 0 5 )x 1 0 3 k 9m - 3
a t 2 9 8 K .S p r e a d
0 ' 7 7 k 9m : .
Averago
e f 19 T y p e| ( 3 ' 5 15 3 7 + 0 ' 0 0 0 0 5 x) 1 0 3 k 9m - 3 .
A v e r a goef 1 4 T y p el l ( 3 ' 5 15 0 6 + 0 ' 0 0 0 0 5x) 1 O 3 km
g -3.
fromthe latticeconstantgives3'51525x
/y'ore.'
Calculation
1 0 3 k 9m - 3 ; t h e s p r e a di s d u e t o l a t t i c ef a u l t sa n d
i m p u r i t i easn d n o t t o e x p e r i m e n tearl r o r .
RZ
. .K, A L N A J SJ . .a n dS M A K U L AA. . ,
R e f e r e n c eM
: YKOLAJEWYC
J Appl Phys35, p 1773(1964).
/ / o r e : A d d i t i o n a vl a l u e s( i n c l u d i n gd i a m o n dc o a t a n d p o l y c r y s t a l l i n ed i a m o n d )a r e g i v e n b y V . A . B o c h k o a n d
Y u . L . O r l o v i n D o k l a d y A k a d N a u k . 9 . 9 . 9 , C . 1 9p1 3. 4 1
( 1 9 7 0 ) a n d b y B . V . D e r y a g i ne t a l . i n D o k l a d y A k a d
t u a u kS . S S F .1 9 6 . p 1 3 2 0 ( 1 9 7 1 ) .
V Graphitization
W h e n d i a m o n d s a r e h e a t e d t o a h i g h t e m p e r a t u r et.h e
c h a n g e st h a t t a k e p l a c e d e p e n d m a r k e d l yo n t h e e n v i r o n m e n ta r o u n dt h e d i a m o n d .l f o x y g e n( o r o t h e r a c t i v ea g e n t )
i s p r e s e n t .a b l a c k c o a t i n g c a n f o r m o n t h e s u r f a c e o f
d i a m o n da b o v ea b o u t - 9 0 0 K .T h i s i s n o t t r u e g r a p h i t i z a t i o n
( w h i c h i n v o l v e s t h e t r a n s i t i o no f d i a m o n d t o g r a p h i t e
w i t h o u t t h e a i d o f e x t e r n aal g e n t s ) .l f d i a m o n d sa r e h e a t e d
i n a n i n e r t a t m o s p h e r et,h e o n s e t o f g r a p h i t i z a t i o nc a n j u s t
b e d e t e c t e da t - 1 8 0 0 K a n d t h e r a t e o f g r a p h i t i z a t i o n
i n c r e a s e rsa p i d l vu n t i l a t - 2 4 0 0 K a 0 ' 1 c a r a to c t a h e d r o ni s
c o n v e r t e dt o t a l l y i n t o g r a p h i t e i n l e s s t h a n 3 m i n u t e s .T h e
o c t a h e d r a ld i a m o n d s u r f a c eg r a p h i t i z e sw i t h a n a c t i v a t i o n
e n e r g y o f 10 6 0 + 8 0 k J m o l - 1 a n d t h e d o d e c a h e d r a l
s u r f a c eg r a p h i t i z e sm o r e r a p i d l y w i t h a n a c t i v a t i o ne n e r g y
o f 7 3 0 + 5 0 k J m o l - 1. T h e a c t i v a t i o n v o l u m e f o r t h e
g r a p h i t i z a t i o pn r o c e s si s a b o u t 1 O c m 3 m o l - 1 . l t a p p e a r s
t h a t t h e g r a p h i t i z a t i o np r o c e s si n v o l v e st h e r e m o v a lo f o n e
a t o m a t a t i m e f r o m t h e d i a m o n ds u r f a c e F
. o ra n o c t a h e d r a l
s u r f a c e t h r e e c a r b o n - c a r b o nb o n d s a r e b r o k e n w h e n t h e
a t o m i s d e t a c h e d a n d f o r t h e d o d e c a h e d r a lf a c e . t w o
carbon-carbon
b o n d sa r e b r o k e n .
References: EVANS.
T. and JAMES,P. F.,Proc Roy Soc.A271,
p 260 (1964).SEAL.M.. PhysicaStatusSolidi,3, p 658 (1963);
D A V I E SG, .a n dE V A N S ,.f.P r o cR o yS o c4 3 2 8 ,p p 4 1 3 - 4 2 7( 1 9 7 2 ) .
Vl Resistanceto chemical attack
D i a m o n di s e x t r e m e l yi n e r t c h e m i c a l l ya n d i s n o t a f f e c t e da t
a l l b y a n y a c i d so r a n y o t h e rc h e m i c a l se, x c e p tt h o s ew h i c h
at high temperaturea
s c t a s o x i d i s i n ga g e n t s - t h e s e p r o v i d e
t h e o n l y e f f e c t i v ew a y t o a t t a c k d i a m o n d a t t e m p e r a t u r e s
b e l o w - 1 3 0 0 K a n d a t n o r m a lp r e s s u r e sS. u b s t a n c e s u c h
as sodium nitrate are known to attack diamond in the
m o l t e n s t a t e a t t e m p e r a t u r e sa s l o w a s - 7 0 0 K . I n o x y g e n
i t s e l f .d i a m o n ds t a r t st o b e o x i d i s e da t p e r h a p s- 9 0 0 K .
T h e o n l y o t h e r p o s s i b l ef o r m o f c h e m i c a la t t a c ki s b y t w o
q r o u p s o f m e t a l s .T h e m e m b e r so f t h e f i r s t g r o u p a r e a v i d
MECHANICAL PROPERTIES
I Hardness
(a) Scratch hardness (Mohs Scale)
T h e M o h s h a r d n e s si s a s c r a t c hh a r d n e s st e s t a n d i s r e l a t e d
t o t h e i n d e n t a t i o nh a r d n e s so f t h e s o l i d ( s e e b e l o w ) . l f t h e
M o h s n u m b e ri s M a n d t h e i n d e n t a t i o nh a r d n e s isn k g / m m 2
i s H . t h e r e l a t i o nb e t w e e n t h e s e q u a n t i t i e si s a p p r o x i m a t e l y
log H:0'2M +1 .5
'equality
Thereis reasonable
of intervalsb
' e t w e e nt h e f i r s t
9 integerson the Mohs scale. but the intervalbetween
9 ( c o r u n d u m )a n d 1 O ( d i a m o n d )r e p r e s e n tas m u c h l a r g e r
d i f f e r e n c ei n i n d e n t a t i o nh a r d n e s st h a n a s i n o l eu n i t o n t h e
M o h s s c a l ew o u l d s u g g e s t .
T y p i c a l v a l u e so f v e r y h a r d m a t e r i a l sa r e .
I
S i C ( c a r b o r u n d u mA) .l 2 O 3
w c . w 2 c .v c
9-9.5
Diamond
10
R e f e r e n c e :T A B O R .D . P r o cP h y sS o c , 8 6 7 , p 2 4 9 ( 19 5 4 ) .
(b) lndentation
hardness (Knoop Scale)
V a l u e ( ( 0 0 1 ) d i a m o n d s u r f a c e ): 5 , 7 0 0 - 1 0 , 4 0 0 k 9 / m m 2 ,
d e p e n d i n go n c r y s t a l l o g r a p hdi ci r e c t i o na n d w i t h n o r m a l
'lkg
l o a d so f 5 0 0 9 .
and 2kg.
C o m m e n t . T h e r e a r e m a n y o t h e r s c a l e s .s o m e a p p r o p r i a t e
. Knoop
t o a l l m a t e r i a l ss, o m e o n l y t o m e t a l s A
i n d e n t e rp r o d u c e sa w e d g e - s h a p e di n d e n t a t i o n
mi t h b n e d i a g o n a l
i n t h e f o r m o f a p a r a l l e l o g r aw
at least seven times longer than the other
d i a g o n a l ,a n d t h i s m e t h o d i s g e n e r a l l yc o n s i d e r e dt o b e t h e m o s t a c c u r a t ef o r c r y s t a l l i n e
s o l i d s .O n a n y s c a l e d i a m o n d i s t h e h a r d e s t
known material.
I t h a s r e c e n t l vb e e n s h o w n t h a t t h e m e a s u r e d
h a r d n e s sv a l u ei s s i g n i f i c a n t liyn f l u e n c e db y t h e
n o r m a ll o a d ,t h e i n d e n t e rs h a p ea n d i t s c r y s t a l p ith that of the indented
l o g r a p h i cr e l a t i o n s h iw
surface. lt has also been shown that the
i n d e n t a t i o nh a r d n e s o
s f d i a m o n dd e c r e a s ews i t h
i n c r e a s i n gt e m p e r a t u r e .
c f . D i a m o n d ( ( 11 1 ) s u r f a c e . < 1 1 0 > d i r e c t i o n , 5 0 0 9
load) : 9,0O0kg/mm2
'10>
C u b i c b o r o n n i t r i d e( ( 1 1 1 ) s u r f a c e .< 1
direction,
5 O O gl o a d ) : 4 , 5 0 O k g / m m 2
B o r o nc a r b i d e( s u r f a c e d, i r e c t i o na n d l o a d n o t k n o w n ) :
2,250kglmm2
S i l i c o n c a r b i d e ( s u r f a c e ,d i r e c t i o n a n d l o a d n o t
2
known): 1,875-3.980k9/mm
(
s
u
r
f
a
c
e
.
Tungsten carbide
d i r e c t i o na n d l o a d n o t
k n o w n ): 2 . 1 9 0 k 9 / m m 2
T i t a n i u m c a r b i d e ( s u r f a c e ,d i r e c t i o n a n d l o a d n o t
k n o w n ): 2 . 1 9 0 k 9 / m m 2
A l u m i n i u m o x i d e ( s u r f a c e .d i r e c t i o n a n d l o a d n o t
known): 2,000k9/mm2
. . 8..
R e f e r e n c e s :K N O O P .F . . P E T E R SC. . G . , a n d E M E R S O NW
J R e sN a t B u r S t a n d a r d s2.3 , ( 1 9 3 9 .;) B R O O K E SC. . A . , N a t u r e , 2 2 8 ,
p 6 6 0 ( 19 7 0 ) ; B RO OK E S C
, .A . .D i a m o n dR e s e a r c 1
h9 7 1. p 1 2 ( 1 9 7 1 ).
L O L A D Z ET, . N . .B O K U C H A V AG, .V . a n d D A V Y D O V AG, . E . . l n d u s t r i a l
L a b o r a t o r y . 3 3p, 1 1 8 7 ( 1 9 6 7 ) ; B R O O K E SC. . A . . G R E E N P
, . and
H A R R I S O NP
. . H . ,D r a m o n dR e s e a r c h1 9 7 4 .o 1 1 .
(c) Abrasion resistance
T h e r e s i s t a n c eo f d i a m o n d t o a b r a s i o n d e p e n d s g r e a t l y o n
t h e m e t h o d o f a b r a s i o n .F o r a d e s c n p t r o n o f t h e v e r y g r e a t
Cependence of the rates of polishing diamond by the
normal polishing methods see Wilks and Wilks (1972). For
a c o m p a r i s o n o f t h e a b r a s i o n r e s i s t a n c eo f d i a m o n d w i t h
o t h e r g e m s t o n e ss e e W r l k s ( 1 9 7 3 ) F o r t h e w e a r o f d i a m o n d
when rubbing at low speeds. under loads. on a range of
metals.see Crompton et al (1973)
. . a n d H O W S E .M . G . W . .
R e f e r e n c e s :C R O M P T O ND. . H I R S T W
( 1 9 1 2 ) . P r o c R o y S o c 4 3 3 3 , p 4 3 5 . W I L K S .E . M . a n d \ , V l L K SJ. . .
( 1 9 1 2 )J a p p lP h y s5 . p p 1 9 0 2 - 1 9 1 W
9 I L K S , EM ( 1 9 7 3 )l n d D l a m
R e v p p 1B 6 - 18 9 ,
(d) Friction
T h e c o e f fi c i e n t o f i r i c t i o n i n a i r , p , i s a b o u t 0 . 1 . b u t t h e v a l u e
depends on load. geometry. polishing direction and
e s p e c i a l l yo r i e n t a t i o n O
. n t h e ( 1 ' 1 ' l )p l a n e s . - 0 . 0 5 a n d i s
a p p r o x i m a t e l yc o n s t a n t i n a l l d i r e c t i o n s .O n t h e ( 1 0 0 ) c u b e
'l
plane values vary between p -0.05 along <01 > to
0 ' 1 - 0 ' 1 5 a l o n g < 0 1 0 > f o r p o l i s h i n ga l o n g < ' l O 0 > . A f t e r
polishing in other directions the fourfold symmetry can
c h a n g e t o t w o f o l d . p r i n a i r i s l i t t l e a f f e c t e d b y l u b r i c a n t so r
s l i d r n gs p e e d i n t h e r a n g e a f e w m i c r o n s p e r s e c o n d u p t o a
f e w m r l l i m e t r e sp e r s e c o n d .
p . i n v a c u u m a p p r o a c h e s1 ( B o w d e n a n d H a n w e l l .1 9 6 6 ) .
R e f e r e n c e s : B O W D E N .F . P . a n d H A N W E L LA
, . E . ( 1 9 6 6 \ .P r o c R
S o c L o n d 4 2 9 5 , p p 2 3 3 - 2 4 3 ; C A S E Y .M . a n d W I L K S .J . ( 1 5 1 2 ) .J
P h y . sD a p p l P h y s 6 , p p 1 7 1 2 - 1 7 8 1; S E A L .M . ( 1 9 5 8 ) .P r o c R S o c
L o n d .4 2 4 8 , p p 3 7 9 - 3 9 3 ,T A B O R .D ( 1 9 7 8 ) .P r o p e r t i eosf d i a m o n d
E d J . E . F I E L D ( 19 7 9 ) . p p 3 2 6 - 3 5 0 ,A c a d e m i cP r e s s L
. ondon;
W I L K S .E . M a n d W I L K S .J . ( 1 9 1 2 ) J P h y sD a p p l P h y s5 , p p 1 9 0 2 1919.
C44-=4'3
Princeand Wooster (1953)
c11-1 1.0
c12-3.3
Coo
McSkiminand Bond (1957)
c11-10.76
C12-1 .25 C44:5.76
4.4
C44-5.19
c44:5.78
G r i m s d i t c ha n d R a m d a s ( 1 9 7 5 )
c,, -10.764 C t z-1.252C44
' 1 0 1l
2
)
( a l lx
Nm
5.174
Pressure and Temperature Coefficients (McSkimrn and
A n d r e a t c h)
t
dc/dP
cr,
Crz
Coo
6.0+0'7
3 . 1+ 0 . 7
3.0+0.3
K:5.42
D r i c k a m e re r a l ( 1 9 6 6 )
x1011Nm-2
K-5.6
K.=4.42x'lO1 rNm-2
K .4.42x'lQt r\6-z
M c S k i m i n a n d A n d r e a t c h( 1 9 7 2 )
G r i m s d i t c ha n d R a m d a s ( 1 9 7 5 )
\1l* 1
ot I
c
- ( 1 ' 4+ 0 ' 2 ) x 1 Q s
- ( 5 ' 7 , 1 1' 5 ) x 1 0 - s
- ( 1 ' 2 5 + 0 ' 1 )x 1 O - 5
(b) Bulk modulus
References: BHAGAVANTAMS
. a n d B H I M A S E N A C H A BJ.
( 1 9 4 6 ) .P r o c R S o c L o n d A 1 8 7 ,p p 3 8 1 3 8 4 . D R T C K A M E R
H. c,
L Y N C H ,R . W . . C L E N E N D E N
R, L . a n d P E R E Z - A L B U E R N
E EA,
'
S
o
l
( 1 9 6 6 ) ./ n
d S t a t eP h y s i c s (' .F S E T T Z
a n d D . T U R N B U L Le d ; )
V o l 1 9 . p p 1 3 5 2 2 8 ; G R I M S D I T C HM, . H . a n d R A M D A SA. K
( 1 9 7 5 ) P h y sR e v B 1 1 ,p p 3 1 3 9 - 3 1 4 8M
; ARKHAMH
, F (1965)
N a t r o n aPl h y s r c aLla b o r a t o r(yU K ) , p r e s e n t eldV . J . P . M U S G R A V E ,
D i a m o n dC o n f e r e n c R
( u n p u b l r s h e dM
) :c S K l M l N .H .J . a n d
e ,e a d r n g
BONDW
, L ( 1 9 5 7 )P. h y sR e v 1 0 5 .p p 1 1 6 - 9 8 7 : M c S K l M t H
N .J .
a n d A N D R E A T C HP
. ( 1 9 1 2 ) .J a p p l P h y s 4 3 . p p 9 8 5 . 2 9 4 4 - 2 9 4 8 .
P R I N C EE, . a n d W O O S T E RW
. . A ( 1 9 5 3 ) .A c t a C r y s t6 , p 4 3 .
C o n t m e n t ; H r g h e s tv a l u e s o f e l a s t i cm o d u l i o f a n y m a t e r i a l
c f t u n g s t e n: K 2 . 9 9 x 1 0 1 1 N m 2 c a l c u l a t e d
f r o m C , , 5 . 0 1 , C r 2 1 . 9 8 . C 4 4 . 1 . 5 14
l / o r e . ' C o m p r e s s i b i l i t yi s t h e r e c i p r o c a lo f t h e B u l k M o d u l u s
(c) Poisson's ratio
C,,
i2C12)
Bhagavantam
a n d B h i m a s e n a c h a( r19 4 6 )
K..5.8
P r i n c ea n d W o o s t e r( 1 9 5 3 )
K
6.q
c,,
"t:
\J'lu4
cr,
r . v, a r i e s b e t w e e n 0 ' 1 a n d 0 . 2 9
-na
v-V'Z
(d) Young's modulus
tr
L11
(C,,-C,r)
(Ctt1-2C,r)
1
S,,
C11-l-C12
M c S k i m i na n d A n d r e a t c h( 19 7 2 ) E : 1 0 . 5 4 x 1 0 1 1 N m 2
G r i m s d i t c ah n d R a m d a s( 1 9 7 5 ) E - 1 0 . 5 0 x 1 0 1l N m - 2
(e) Anistrop,
T h e c o n d i t r o nf o r i s o t r o p yi s . ,
e
^ ^
t t:,
11-v
-:,
12
lll Strength
(a) Cleavage plane
D i a m o n dn o r m a l l yc l e a v e so n t h e ( 1 1 i ) p l a n e .b u t c l e a v a g e
h a s b e e n o b s e r v e do n t h e ( 1 1 0 ) p l a n e .a n d . t o a l e s s e r
e x t e n t .s o m e o t h e r p l a n e s( J . R S u t t o n .D i a m o n d .M u r b v
I C o . L o n d o n .1 9 2 8 ) . C u r v e dc r a c k sc a n b e p r o d u c e db y
g r a C u a l l o a d i n g w i t h a s p h e r i c a li n d e n t e r ( L e v i t t a n d
N a b a r r oP
. r o c R o y S o c , A 2 9 3 , 1 9 6 6 . P l a t e6 ) . R i n g c r a c k s
a r ef o u n d f r e q u e n t l yo n d i a m o n ds u r f a c e sa n d c a n b e m a d e
b y b o t h s l o w a n d i m p a c t l o a d i n g w i t h i n d e n t e r s ,n o t
necessarild
yiamond.
(b) Cleavage energy
Theoreticalcleavageenergiesfor diamond
Plane
1'1
332
221
331
110
CLL
K "iG''t
x1011Nm-2
For diamondthis ratio is closeto unity (1 .21), so that
Y o u n g ' s M o d u l u s d o e s n o t v a r y g r e a t l yw i t h o r i e n t a t i o n .
ll Elastic properties
(a) Elastic moduli
B h a g a v a n t a m a n d B h i m a s e n a c h a r( 1 9 4 6 )
c11,.9'5
C12-3.9
Markham (1965) C1 1-10.76
C12:2.75
McSkimin and Andreatch(1972)
c1 1:10.'/g
c12-1.24
Markham (1965)
x 101 1Nm-2
x 101lNm-2
321
211
320
210
311
100
Angle between plane
and (l 11) plane
Cleavage energy
(Jm-21
0'and 70"32'
10'0'
15 ' 4 8 ' ,
22" O',
3 5 ' 1 6 'a n d9 0 '
11" 2 4 '
22"12'
19 ' 2 8 ' ,
36"48',
3 9 ' 14 ' ,
29 "30',
54'44'
10.6
1 1. 1
1 2. 2
1 2. 6
13 . 0
13 . 4
14.3
15.0
15'3
I O'4
16.6
1 B. 4
C l e a v a g ee n e r g y c a n b e c o m p u t e d b y c a l c u l a t i n gt h e
n u m b e r o f b o n d s w h i c h c r o s st h e u n i t a r e a o f a c h o s e n
p l a n e a n d m u l t i p l y i n gt h i s b y t h e C - C b o n d s t r e n g t h T
. he
v a l u e sa r e o b t a i n e db y u s i n g a v a l u e o f 9 3 k c a l m o l - 1 o r
5 ' B x 1 0 - 1 s J f o r t h e C - C b o n d ( P a u l i n gT, h e N a t u r eo f t h e
C h e m i c a lB o n d . C o r n e l lU n i v e r s a lP r e s s ,1 9 6 0 , p 8 5 ) .
A v a l u e o f 5 ' 3 J m - 2 i s p r e d i c t e df o r t h e f r a c t u r es u r f a c e
e n e r g y o f t h e ( 11 1) p l a n e .A n e x p e r i m e n t a m
l easurement
(Field1
. 9 7 9 ) g i v i n g 6 J m - z s u g g e s t st h a t t h e r e i s a
n e g l i g i b l ec o n t r i b u t i o nf r o m p l a s t i c d e f o r m a t i o nf r a c t u r e
at room temoerature.
I
I
(c) Velocity of cleavage
C l e a v a g ev e l o c i t i e so f a f e w t h o u s a n d m e t r e s p e r s e c o n d
a r e c o m m o n . V e l o c i t i e su p t o 7 . 2 0 0 m s t h a v e b e e n
. cademic
l r o p e r t i eos f D i a m o n d A
r e c o r d e d( F i e l d .P h y s i c aP
P r e s s 1. 9 7 9 , C h a p t e r9 ) .
(d) Theoretical strength
Theoreticalstrengths of ideal solids (Field,1979)
C ( d a n r o n d ) . - l 1l
. : 1 ' 11
Sr
1 90
3.2
3.7
0 .13
3.9
21
.. 100
M,oO
10 0
NiC
Cu
-lll
/\e
:111
r)
(f ) Shear strength
T h e o r e t i c a vl a l u e :
12x101oNm-2 (Tyson)
E x p e r i m e n t avl a l u e s : B . - 7x l 0 e N m - 2 ( B o w d e n & H a n w e l l ,
i:Tr1,l'fil?"
r,o'"
.
r?i?,?Jfixlloy
t o r s i o nt e s t ) .
l y ' o r e .D' o u b t m u s t e x i s t a s t o w h e t h e r t h e s es t r e n g t hv a l u e s
'shear'
are genuine
s t r e n g t h s ;i t i s v e r y l i k e l y t h a t
t h e d i a m o n d ss t i l l f a i l e d b y c l e a v a g eT. h e v a r i a t i o n
i s b e c a u s eo f t h e v e r y d i f f e r e n tm e t h o d o f t e s t . I n t h e
f r i c t i o ne x p e r i m e not n l y a v e r y s m a l la r e ao f m a t e r i a l
w o u l d b e s t r e s s e dw
. h i l e i n t h e t o r s i o nt e s t f a i l u r e
w o u l d p r o b a b l ys t a r t a t a c o m p a r a t i v e l yl a r g e d e f e c t
a t t h e s p e c i m e ne d g e .
R e f e r e n c e sT: Y S O NV. " lR
. . ,P h i lM a g1 4 ,p 9 2 5 ( 1 9 6 6 ;) B O W D E N .
F . P .a n dH A N W E L L
p 1 2 7 5( 1 9 6 4 ) ;H U L L E
A,. E . .N a t u r e . 2 0, 1
. .H.
and MALLOY.G.T..J ournaI of Engineertng for Industry (Trans ASME).
p 3 7 3( N o v e m b 1e 9r 6 6 ) .
Strength tn shea/
tn l-Dnstan
5lrength
D t r - . c u o n 6 ! 1 t ( 1 4 ' .N m
B e r m a nC
, l a r e n d o nP r e s s( 1 9 6 5 ) ; B E L L .J . G . . W I L K S ,E . M . a n d
WILKS, J.. lndustrial Dramond Review, pp 135-138 (1975) ;
C H R E N K OR
. . M . a n d S T R O N GH
. . M . , G e n e r aEl l e c t r i R
c e o o r t7 5
c R D o 8 9 , p p 1 - 4 6 ( 19 7 5 ) .
drrrlF
Systern
ofr(10!cNm-r)
1 2. 1
1.37
0.17
a.11
0.15
0 . 10
0.20
0.20
1.6
0.28
0 . 12
4.o77
q!h/tt
o.24
4.12
o.12
0.039
0.039
T h e r a t i o o f t e n s i l et o s h e a r s t r e n g t h si s p r e d i c t e dt o c l o s e
t o u n i t v . b u t a s t h e t a b l e i s d e s c e n d e dt h e r a t i o b e c o m e s
l a r g e . i . e . t h e m a t e r i a l si n t h e t a b l e r a n g e f r o m h i g h l y
b r i t t l e( t o p ) t o h i g h l yd u c t i l e( b o n o m ) .
/ y ' o f e . ' A c c u r a tcea l c u l a t i o n so n d i a m o n d a r e d i f f i c u l t .
(e) Tensile strength
E x p e r i m e n t a lv a l u e s f o r s t r e n g t h s h o w w i d e v a r i a t i o n s .
T h i s i s p a r t l y a r e f l e c t i o no f t h e d i f f i c u l t y e n c o u n t e r e di n
m a k i n g t e s t s w i t h d i a m o n d s ,b u t a l s o i n d i c a t e st h a t t h e
y f f e c t e db y
s t r e n g t ho f i n d i v i d u adl i a m o n d si s s i g n i f i c a n t l a
t h e d e f e c t s ,i n c l u s i o n sa n d i m p u r i t i e sw h i c h t h e y c o n t a i n .
V a l u e s q u o t e d r n t h e l i t e r a t u r ea r e a l s o d e p e n d e n to n t h e
v a l u e sc h o s e n b y t h e a u t h o r sf o r t h e e l a s t i c m o d u l i a n d
P o i s s o nr a t i o .
p " a n d p c ' a r e t h e a v e r a g es t r e s s e so b t a i n e db y d i v i d i n g
t h e l o a d b y t h e c r a c k a r e a a n d t h e o b s e r v e d .o r c a l c u l a t e d .
a r e a r e s p e c t i v e l yw. h e n d e t e r m i n i n gt e n s i l e s t r e n g t h u s i n g
t h e r i n g c r a c k i n d e n t a t i o nm e t h o d .
S t r e n g t h d a t a f o r d i a r n o n d . D a t a r e c a l c u l a t e dw i t h
, 979)
E : 1 0 ' 5 x 1 0 11 N m - 2 a n d y - 0 ' 2 ( F i e l d 1
(g) Compressive strength
( i ) A v e r a g ev a l u e f o r n a t u r a lo c t a h e d r a cl o n t a i n i n gn o
v i s i b l ef l a w s o r i n c l u s i o n s - B . 6 8 x 1 O e N m- 2
:'16'53x10sNm-2
M a x i m u mv a l u e
( A r e a o f f a c e so v e r w h i c h l o a d a p p l i e da p p r o x i m a t e l y
10 - 6 m2 ) .
Reference:HULL,E.H. and MALLOY,G. T.,Journa/of Engrneering
for lndustry(TransASME).p 373 (November
1966).
( i i ) S y n t h e t i cM i c r o - d i a m o n d s
A v a r i e t yo f m e t h o d sa r e a v a i l a b l ef o r s t r e n g t ht e s t i n g
m i c r o - d i a m o n d sT. h e s i n g l e g r i t c o m p r e s s i o nt e s t
a l l o w s a s y s t e m a t i cs t u d y o f p a r t i c l e s t r e n g t h a n d
f a c t o r s a f f e c t i n g i t . C r u s h i n g e x p e r i m e n t so n s y n thetic grit with well-defined contact faces give
s t r e n g t h v a l u e s o f - 10 1 0 N m - 2 f o r g o o d q u a l i t y
m a t e r i a lo f 3 5 / 4 0 U S m e s h . I n g e n e r a l .s m a l l d i a m o n d s ( o r s m a l ll o a d e da r e a s )u s u a l l ye x h i b i tg r e a t e r
s t r e n g t ht h a n l a r g ed i a m o n d s( o r l a r g el o a d e da r e a s ) ,
i.e.. there is a size effect.
R e f e r e n c e : F I E L D ,J . E . T h e P r o p e r t i eosf D i a m o n d( 1 9 7 9 )
A c a d e m iPc r e s sL,o n d o n .
h) Plastic flow
T h e t e m p e r a t u r e sf o r s i g n i f i c a n t d i s l o c a t i o n m o b i l i t y a r e
> 2 , 1 0 0 K ( l a d i a m o n d )a n d > 1 , 9 0 0 K ( l l a d i a m o n d ) .
R e f e r e n c eE
: V A N SJ.. a n dW I L D ,R . K ' P h i lM a g1 2 ,p a 7 9( 19 6 5 ) .
Strength data for diamond. Data recalculated
w i t h E : 1 0 . 5 v 1 Q 1 1 f l 6 - 2a n d y : 0 . 2 ( F i e l d ,1 9 7 9 )
lndenrctradtuslmm
Face
Authot
O c t a h e d r ai
Cube
Dodecahedral
I> 0 . 5
O c t ah e d r aI
Cube
Dodecahedral
I
| 0 . 3 9d Lanrond
)
tu ng sten
catDLoe
)
Pc(1o'gNm-'?)
p6(10eNm-')
10.3
13.2
1 1. B
10 . 8
10 . 8
t/,o
13 . 8
32.4
13.7
tl
Cube
0 28
c
Cube
0 245 d anond
d
Cube
0.25
d an)ond
32-4
29.9
16 . 4 - 3 2 . 4
d
Synthet c
o c t a h e d r aI
ano cuDe
0 25
d amond
2 1. 6 - 3 2 . 4
damord
THERMAL PROPERTIES
I Thermal conductivity
T y p i c a lv a l u e s( a t 2 9 3 K ) :
M a x i m u ma t - B O K
aHowes(1965):bBowdenaT.bor(1965);cBellela/(1977);dChrenkoaStrong(1975)
. p 174'
. . R . ,P h y s i c aPl r o p e r t i eosf D i a m o n d p
R e f e r e n c e s :H O W E SV
T y p el a 6 0 0 - 1 0 0 0 W m - 1K - 1
T y p el l 2 O 0 O - 2010 W m - 1 K - r
T y p el a 2 0 0 0 - 4 0 0 0 W m - 1K - 1
T y p el l a u p t o
1 ' 5 x 1 0 4W m - 1 K - 1
ll Thermal expansion (linear)
'l
At 293K
0 .B+0 .'l x 0-6
19 3 K
0'4+0'1 x 10-6
400-1200K
1 '5-4 '8 x 10-o
Law obeyedbetween420Kand 1200K.
Gruneisen's
R e f e r e n c e s :S K I N N E R B
. . J . ( 1 9 5 7 ) .A n M r n e r , 4 2 , p 3 9 ; S L A C K ,
G . A . a n d B A R T R A M .S . F . ( 1 9 7 5 ) . J a p p l P h y s . 4 6 , p p 8 9 - 9 8 ;
T H E W L I SJ. . a n d D A V E Y A
. . R . ( 1 5 5 6 ) .P h i tM a g 1 . p p 4 0 9 - 4 1 4 .
lll
Specific heat
A t 3 0 0 K b o t hC , a n d C , : 6 ' 1 9 5 J m o l ' K
Forvaluesat othertemperatures
seeReferences.
Effective
Debyetemperature
273-1 100K.dD:1 860+10K.
EffectiveDebyetemperature
0K, dD:2220+20K.
l/ote.' Visible region 4OO-700nm.
A n y c o l o u r a t i o ni s d u e t o a b s o r p t i o nb a n d s i n t h i s r e g i o n ,
o r i n t h e c a s eo f T y p e l l b d i a m o n d st o t h e t a i l o f t h e i n fr a - r e d
a b s o r p t i o ns p e c t r u m a s s o c i a t e dw i t h t h e a c c e p t o r c e n t r e .
T h e y e l l o w c o l o u r a t i o no f T y p e l b d i a m o n d sr e s u l t sf r o m t h e
t a i l o f t h e u l t r a - v i o l e t a b s o r p t i o n a s s o c i a t e dw i t h t h e
s u b s t i t u t i o n anl i t r o g e ni m p u r i t y .
R e f e r e n c e sC: L A R KC. . D . .D I T C H B U R R
N .W . a n d D Y E RH
. . B.
( 1 9 5 6 ) .P r o cR S o c L o n d , A 2 3 4 ,p p 3 6 3 - 3 6 8 .R O B E R T S O N
R.. .
. h i l T r a n sR o y S o c L o n d .
F O X ,J . J . a n d M A R T I NA. . E . ( 1 9 3 4 ) P
A232,pp 463 535.
lV Optical spectra
F o r a g u i d e t o o p t i c a l s p e c t r ai n t h e v i s i b l e r e g i o n s e e
C o l l i n s ( 1 9 1 4 ) . F o r a c o m p r e h e n s i v er e v i e w s e e D a v i e s
Academic ( 1 e 7 7 ) .
Refsrence:
Properties
of Diamond,
Ed.J E FIELD,
Press.
o 650.
R e f e r e n c e s :C O L L I N S A
, . T . ( 19 7 4 ) .l n d D i a mR e v .3 4 , p p 1 3 1- 1 3 7 .
D A V I E SG
. . ( 1 9 7 7 ) . / n ' C h e m i s t r ya n d P h y s i c so f C a r b o n 'V. o l 1 3 .
p p 1 - 1 4 3 . ( P . L . W A L K E Ra n d P . A . T H R O W E Re, d s ) M a r c e lD e k k e r ,
New York.
O P T I C A T A N D E L E C T R I C A LP R O P E R T I E S
I Refractive index
A t H g g r e e n5 4 6 . 1 n m
C-line 656'28nm
D - l i n e 5 8 9. 2 9 n m
F - l i n e 4 8 6 ' 13 n m
p
pc
Fo
pr
:2'4237
-2'40990
:2'41726
-2 '43554
'3
Qo -1) / (, r-rc):55
N e a rc u t - o f f i n u l t r av i o l e ta t 2 2 6 ' 5 n m , p - 2 ' 7 1 5 1
Brewstea
r n g l e ( a t D - l i n e )- 6 7 ' 5 3 " .
C o e f if c i e n to f r e fl e c t i o n( n o r m a li n c i d e n c e )0 ' 1 7
)
Note:
,lL2
4
lt'-t'
7r2_L?
,zL2
)"2_L3
e 1: 0 ' 3 3 0 6
c2 : 4 ' 3 3 5 6
1 . ,- 1 7 5 . O n m
1.2:106'0nm
where
R e f e r e n c e : P E T E RF. . ( 19 2 3 ) .Z P h y s 15 , p p 3 5 8 - 3 6 8 .
1
z A ,. r
:(Y ):+.o4xiO-6K-1
p\ar / p
1 /dp\
-(
l
p\dP./r
-
-0.36x10-12Pa-1
R e f e r e n c e : F O N T A N E L L AJ.. . J O H N S T O N .R . 1 . . C O L W E L LJ. . H .
a n d A N D E E N .C . ( 1 9 7 1 ) .A p p l O p t t c s . 1 6 ,p p 2 9 4 9 - 2 9 5 i .
ll Dielectric constant
c : 5 '70+0 '05 at 300K
x 1 O - 5 T -1l ' 6 6 0 3x l O - 7 f 2
e: 5'7011 -5'35167
oexio-6K-l
*(#)":8
:(#).
_ 0.72x 10-12Pa_1
R e f e r e n c e : F O N T A N E L L A ,J . . J O H N S T O N . R . 1 . . C O L W E L L .
J . H . a n d A N D E E N .C . ( 1 9 7 1 ) .A p p l O p t i c s .16 , p p 2 9 4 9 - 2 9 5 1 .
lll
Optical transparency
Typella diamond225nm-2'5prm,> 6g.m.
V Resistivity
Type I and most Type lla, )
1O'oohmm
Typellb, i0 '-100ohm m
/ y ' o r e .F' i g u r e s f o r d i a m o n d o n l y a p p l y i n t h e d a r k s i n c e
there is considerablephotoconductivity in ultrav i o l e tl i g h t .
R e f e r e n c e sD
: E N H A MP. . ,L I G H T O W L E RES.C
. . a n d D E A NP
. .J .
( 19 6 7 ) .P h y sR e v 1
, 6 1 ,p p 1 6 2 - 1 6 8K. E M M E YP..J . a n dW E D E P O H L .
P .T . ( 1 9 6 5 )/.n ' P h y s i c aPlr o p e r t ioefsD i a m o n d ' ( R
B.E R M A Ne,d . )
C h a p t e1r2 C l a r e n d oPnr e s sO, x f o r d .
t V o t e : D i a m o n d s e x i s t w h i c h w o u l d n o r m a l l yb e c l a s s i f i e d
a s T y p e l l a , b u t w h i c h h a v e r e s i s t i v i t i eisn t e r m e d i a t e
between Type llb and Types 1 and lla. These fall
within a rangefrom 10 '-1O''ohm m at 293K.
H o w e v e r , m o s t d i a m o n d s a r e i n s u l a t o r sw i t h a
r e s i s t i v i to
y f ) 1 0 ' o o h mm .
Comment: lnsulating diamond can have a very high
r e s i s t i v i t yc. o m p a r a b l ew i t h o r b e t t e rt h a n m a n y
i n s u l a t o r si n c o m m e r c i aul s e .T h e b e s t i n s u l a t o r
i s p r o b a b l yf u s e ds i l i c a( > 5 l O 2 o o h mm ) .
"
Vl Hole effective mass
m o = . f r e ee l e c t r o nm a s s
( a ) c y c l o t r o nr e s o n a n c em e a s u r e m e n t(sR a u c h .1 9 6 2 )
m*:2'1 mo
h e a v yh o l e b a n d
lightholeband
m * -0.7 m o
s p l i t - o f fb a n d
m *:-1 '06m 6
( b ) a v e r a g ef r o m H a l l e f f e c t m e a s u r e m e n t s
V J e d e p o h l m * - 0 ' 2 5 m 6 ( M i t c h e l l 1, 9 6 3 )
Kemmey
m + : 0 . 4 m o ( M i t c h e l l1. 9 6 3 )
Williams
m * : 0 ' 7 5 m s ( W i l l i a m s1, 9 7 0 )
L i g h t o w l e r s m * : 1 ' 1 m o ( D e a ne t a l . , 1 9 7 6 )
( c ) a v e r a g ef r o m F a r a d a yr o t a t i o nm e a s u r e m e n t s
m * - O ' B Bm 6 ( P r o s s e r1,9 6 4 )
. .J . . L I G H T O W L E RES.C. . a n dW I G H TD
R e f e r e n c e sD
: E A NP
. .R.
( 1 9 6 5 )P. h y sR e v ,1 4 0 ,4 3 5 2 - 4 3 6 8 M
; I T C H E LE
L .W . J . ( 1 9 6 3 ) .
s I n d u s t r yP' .a r i 1
s 9 6 2 (, P .G r e e n e ,
l n ' P r o c1 s tI n tC o n go n D i a m o n di n
e d . ) p p 2 4 1 - 2 5 1 .l n d u s t r i aDl i a m o n dI n f o r m a t i oBnu r e a uL. o n d o n .
P R O S S EVR.,( 19 6 4 ) C
. z e cJk P h y s8. 15 , p p 12 B - 13 4 ; R A U C HC
, .J.
( 1 9 6 2 ) .l n ' P r o co f I n t C o n f o n t h e P h y s r cos f S e m i c o n d u c t o r s ' .
E x e t e r( .A . C . S t r i c k l a nedd. . )p p 2 7 6 - 2 8 0T. h e I n s to f P h y sa n dt h e
. h DT h e s i s .
P h y s i c aSlo c . L
. o n d o n ; W I L L I A MAS. ,W . S . ( 1 9 7 0 ) P
U n i v e r s iot yf L o n d o n .
Vll Hall mobility and coefficient
p h : 0 ' 1 6 m 2 V - 1 s - 1 ( t y p i c a lv a l u ea t 2 9 0 K )
S a m p l e d e p e n d e n t a n d s t r o n g l y t e m p e r a t u r ed e p e n d e n t .
f o r s y n t h e t i cs e m i - c o n d u c t i n gd i a m o n d a r e g e n e r a l l yl o w e r ,
a n d a r e m u c h l o w e r i n h e a v i l yd o p e d m a t e r i a l .
R : O ' 1 m 3 C - 1 ( t y p i c a lv a l u ea t 2 9 0 K )
Sample dependent and very strongly temperature de-
pendent.(Both thesemustbe so becauser?is relatedto the
numberof freeholes.)SeeChapter3. Figs3.1and 3.6.The
diamond
lattershows that for syntheticsemi-conducting
v a l u e so f H a l l c o e f f i c i e ni n
t t h e r a n g e1 O - 3 ' < R < O ' 3 m 3
C - 1 a t 2 9 0 Km a y b e o b t a i n e d .
Phy.icll Proportior ot Di.mond, Ed. R. BERMAN Clarendon Press.Oxford (1 965). Science and Technology of Industrial Diamonds, Vol.1, Ed. J. BUBLS. Industrial
D i a m o n d l n f o r m a t i o n B u r e a u , L o n d o n ( 1 9 0 T7 h) .o D i a m o n d , W . B . C A T T E L L E . J o h n L a n e , T h e B o d l e y H e a d , L o n d o n ( 1 9 1 1 )D. a . m o n d s , S i r W . C R O O K E S . H a r p e r e
B r o t h e r s ,L o n d o n ( 1 9 0 9 ) . c € m s t o n e 8 , G . F . H E B B E R T S M I T H , M e t h u e n I C o . L T D . L o n d o n ( 1 9 4 9 ) . D i a m o n d , J . R . S U T T O N , M u r b y I C o . L o n d o n ( 1 9 2 8 ) . T h c G o n . d i
o f t h c D i r m o n d , A . F . W I L L I A M S . E r n s tB e n n L t d . L o n d o n ( 1 9 3 2 ) . D i a m o n d R e s e a t c h 1 9 6 4 , 1 9 6 5 , 1 9 6 & 1 9 6 9 , 1 9 7 0 , 1 9 7 1 , 1 9 7 2 , 1 9 7 3 , 1 9 7 + a n d 1 9 7 5 , l . D . l . B . L o n d o n
Th. Proportiet of Diamond, J. E. FIELD. Academic Press,London (1 979).