251 PART I: Solutions to Odd-Numbered Exercises and Practice Tests a 127. sinA =- ==> a = c. sin A = 20 sin 28° ~ 9.39 129. a = ~/c2 - b2 = -~/12.542 - 6.22 ~ 10.90 c b 6.2 sin B .... ==~ B ~ 29.63° c 12.54 A = 90° - 29.63° = 60.37° B = 90° -A° = 62° b cosA=- ==~ b=c.cosA~ 17.66 c Verifying Trigonometric Identities Section 5.2 [] You should know the difference between an expression, a conditional equation, and an identity. [] You should be able to solve trigonometric identities, using the following techniques. (a) Work with one side at a time. Do not "cross" the equal sign. (b) Use algebraic techniques such as combining fractions, factoring expressions, rationalizing denominators, and squaring binomials. (c) Use the fundamental identities. (d) Convert all the terms into sines and cosines. Solutions to Odd-Numbered Exercises csc2 x 1 sin x cot X sinE x cos x =1 1. sin t csc t = sin 1 sin x ¯ cos x CSCX " secx 7. tanEo+6=(secE0- 1)+6 5. COSEft- sinEft= (1 -sinEft)- sin2fl = sec2 19 + 5 = 1 -- 2 sinEfl sin x 9. cos x + sin x tan x = cos x + sin x ¯ ~ cos x cos2 x + sin2 x COS X 1 COS X = sec X 11. x Yl ¸Y2 0.2 4.835 4.835 0.4 0.6 0.8 1.0 1.2 1.4 2.1785 1.2064 0.6767 0.3469 0.1409 0.0293 2.1785 1.2064 0.6767 0.3469 0.1409 0.0293 1 sec x tan x cos x = COS X * ~ sin x COS2 x sin x 1 - sin2 x sin x 1 sin x sin x = csc x - sin x 13. 252 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests 0.4 0.6 0.8 1.0 1.2 1 cscx - sinx = ~- sin x sin x 1 - sin2 x sin x 1.4 x 0.2 Yl 4.835 2.1785 1.2064 0.6767 0.3469 0.1409 0.0293 Y2 4.835 2.1785 1.2064 0.6767 0.3469 0.1409 0.0293 cos2 x sin x = COS X ° COS x sin x -" COSX " cotx o 15. o iX 0.2 0.6 0.4 0.8 1.0 1.2 1.4 Yl 5,0335 2.5679 1.7710 1.3940 1.1884 1.0729 1.0148 Y2 5.0335 2.5679 1.7710 1.3940 1.1884 1.0729 1.0148 ’ COS X sin x + cos x cot x = sin x + cos x . sm x 2 2 _,_ sin x + cos x sin x 1 sin x = csc x 1.5 17. x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Yl 5.1359 2.7880 2.1458 2.1995 2.9609 5.9704 Y2 5.1359 2.7880 2.i458 2.1995 2.9609 5.9704 o ~1 +~1 =c°tx+tanx tanx cotx tanx.cotx = cot x + tan x o 19. The error is in line 1: cot(- x) #’cot x. 21. Missing step: (sec2x - 1)2 = (tan2 X)2 -" tarl4 x 23. sin~/2 x cos x - sin~/2 x cos x = sin1/2 x cos x(1 - sin2 x) = sint/2 x cos x ¯ cos2 x = coss x.,/~ffx 1 -- X SeCX = COtX" secx 27. see(-x.__._..~) = cos(-x) = sin(-x) csc(-x) 1 cos(-x) sin x - ~ = - tan x COS X 253 29. cos(-0) PART 1: Solutions to Odd-Numbered Exercises and Practice Tests cos 0 1 + sin 0 1-sin0 1 +sin0 cos ~(1 + sin 0) 1 - sin2 0_ cos ~(1 + sin O) cos2 ~ 1 + sin O 1 + sin(-0) ~os 0 1 sin 0 cos 0 cos O = sec 0 + tan 0 sin x cos y + cos x sin y 31. cos x cos y - sin x sin y 33. tan x + cot y -- tan x cot y sin x cos y+ cos x sin y cos x Cos y cos x cos y cos x cos y sin x sin y cos x cos y cos x cos y tan x + tan y 1 - tan x tan y 1 1 tan y + cot x cot x tan y cot x ¯ tan y = tan y + cot x 11o 1 cot x tan y cot x ¯ tan y 35. ~/~+sinO_ ~/~+sinO. l+sinO -sinO -sinO 1 +sinO =~/(i Note: Check your answer with a graphing utility. What happens if you leave off the absolute value? + sin 0)2 -- sin2 0 cos2 O 1 + sin 0 37. cos2x+cos -x =cos2x+sin2x= 1 ¯ -x =secx.cosx= 1 41. 2 sec2 x -- 2 secx x sin2 x - sin2 x -- COS2 x = 2 sec2 x(1 - sin2x) - (sin2 x + cos2 x) = 2 sec2 x(cos2 x) -- 1 1 =2"~" cos2x1 2 cos x =2-1 =1 43. 2 + cos2x - 3 cos’ix = (1 - cos2 x)(2 + 3 cos2 x) = sin2 x(2 + 3 cos2 x) 254 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 45. csc4 x - 2 csc2 x + 1 = (csc2 x - 1)2 = (cot2 x)2 = cot4 x 47. see4 0 - tan4 0 = (see2 0 + tall20)(sec2 0 -- tan2 O) -- (1 + tanz 0 + tan2 0)(1) = 1 + 2tan20 49. sin/3 1 + cos/3 1 -cos/3 1 +cos/3 -- sin f!(1 + cos f!) 1 - cos2/3 sin/3(1 + cos/3) sin2/3 -- 1 + cos/3 sin/3 51. tan3 a - 1 (tan a - 1)(tan2 a + tan a + ~1) =tan2a+tana+ 1 tana- 1 tana- 1 53. It appears that Yl = 1. Analytically, 1 1 tanx+ 1 +cotx+ 1 + cotx + 1 tan x + 1 (cot x + 1)(tanx + 1) .--. tanx + cotx + 2 cotxtanx + cotx + tanx + 1 tan x -t- cot x ÷ 2 tanx+cotx+2 =1. 55. It appears that Yl -" Sin X. Analytically, 1 COS2 X -- 1 -- COS2 X -- sin2x - sinx. sin x sin x sin x sinx 2 57. Inlcot 01 - _ Icos 0 - tnlsin 01 - lnlcos 0l - Inlsin 01 -2 59. -ln(1 + cos 0) = In(1 + cos 0)-1 = lnl +cosO 1 -cos =ln 1 - cos 0 1 - cos2 0 1 - cos 0 =In sin2 0 = In(1 - cos 0) - In sin2 0 = In(1 - cos o) - 2 Inlsin ol 61. sin2 25° + sin2 65° = sin2 25° + cos2 25° = 1 255 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests 63. cos2 20° + cos2 52° + cos~ 38° + cos2 70° = c°s2 20° + c°s2 522 + sin2(90° - 38°) + sin2(90° - 70°) = cos2 20° + cos~ 522 + sin252° + sinz 20° = (cos2 20° + sin2 20°) + (cos~ 52° + sin~ 52°) =1+1 =2 65. tanS x = tanax " tan2 x = tan3 x(sec2 x - 1) = tan3 x sec2 x -- tan3 x 67. (sinz x - sin~ x)cos x = sin~ x(1 - sinz x)cos x 69. /zW cos 0 = W sin 0 71. cos x - csc x. cot x = cos x W sin 0 sin 0 tan 0, W 4:0 /z W cos 0 cos 0 -- sin2X ° COS2 X ° COS X = COS3 X sin2 x 1 cos x sin x sin x sina - cos x(1 - csc2 x) cos = cos x(-cot~ x) 73. True. f(x) = cos x and g(x) = sec x are even 75. False. For example, sin(l,z) 4: sinz (1) 79° ~/sin~ x + cos2x 4: sin x + cos x The left side is 1 for any x, but the right side is not necessarily 1. For example, the equation is not tree for x = 7r/4. + 1)~! = sin[51-(12n~r + ~r)l $1. sinI(12n 6 = sin(2n,rr + -~) "tr 1 = sin 62 = ~1for all integers Thus, sin[(12n 6 ÷ 1)qr] ¯ 83. (x- i)(x + i)(x- 4i)(x + 40 = (x~ + 1)(x2 + 16) =x*+ 17xz+ 16 256 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests 87. f(x) = -2x-3 89, f(x) = 5-x - 2 y y 246 91. s = rO 0- s 26 r 11 95. Quadrant III 93. Quadrant III ~ 2.3636 radians Section 5.3 Solving Trigonometric Equations [] You should be able to identify and solve trigonometric equations. [] A trigonometric equation is a conditional equation. It is true for a specific set of values. [] To solve trigonometric equations, use algebraic techniques such as collecting like terms, taking square roots, factoring, squaring, converting to quadratic form, using formulas, and using inverse functions. Study the examples in this section. I Use your graphing utility to calculate solutions and verify results. Solutions to Odd-Numbered Exercises 1. 2cosx- 1 =0 3. 3tan22x- 1 =0 (a) 2cos~- 1 =2 - 1 =0 (a) 3 tan\-~-/j - 1 = 3~an2-~- 1 (b) 2cos’~’-- 1 = 2 - 1 =0 =3 -1 =0 ~_~ -1 =3tan~ - 1 (b) [3(lO’n’]] tank 212]J =0
© Copyright 2026 Paperzz