Riemann Sums Practice

Riemann Sums Practice
Express as the limit of a Riemann sum in Sigma notation
Example:
𝑛
5
3𝑖 3
∫ 7π‘₯𝑑π‘₯ = lim βˆ‘ 7 (2 + ) βˆ™
π‘›β†’βˆž
𝑛 𝑛
2
1.
2.
3.
𝑖=1
Name_______________________________________
2
3
∫ √π‘₯ 𝑑π‘₯
0
1
πœ‹
∫ cos⁑(π‘₯)𝑑π‘₯
∫ √2 + π‘₯𝑑π‘₯
0
0
4.
5.
2
5
∫ π‘₯ 2 𝑑π‘₯
∫ √π‘₯
1
3
6.
7.
2
5
∫ √4π‘₯𝑑π‘₯
∫ 2√π‘₯𝑑π‘₯
0
0
8.
9.
5
5
∫ 2π‘₯ 4 𝑑π‘₯
∫ π‘₯𝑑π‘₯
4
1
x
0
2
4
6
8
f(x)
0
2
8
11
15
10. The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,8],
8
which of the following could be the value of ∫0 𝑓(π‘₯)𝑑π‘₯ ?
a. 8
b. 42
c. 68
d. 72
e. 80
Riemann Sums Practice
Express as the limit of a Riemann sum in Sigma notation
Example:
𝑛
5
3𝑖 3
∫ 7π‘₯𝑑π‘₯ = lim βˆ‘ 7 (2 + ) βˆ™
π‘›β†’βˆž
𝑛 𝑛
2
1.
2.
3.
𝑖=1
Name_______________________________________
2
3
∫ √π‘₯ 𝑑π‘₯
0
1
∫ √2 + π‘₯𝑑π‘₯
πœ‹
∫ cos⁑(π‘₯)𝑑π‘₯
0
0
4.
5.
2
∫ √π‘₯
5
∫ π‘₯ 2 𝑑π‘₯
1
3
6.
7.
2
5
∫ 2√π‘₯𝑑π‘₯
∫ √4π‘₯𝑑π‘₯
0
0
8.
9.
5
∫ π‘₯𝑑π‘₯
4
5
∫ 2π‘₯ 4 𝑑π‘₯
1
x
0
2
4
6
8
f(x)
0
2
8
11
15
10. The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,8],
8
which of the following could be the value of ∫0 𝑓(π‘₯)𝑑π‘₯ ?
a. 8
b. 42
c. 68
d. 72
e. 80
11. The table gives the velocity of Joe riding his bike, in meters per minute, over the first 12 minutes of his bike ride.
x
f(x)
0
0
2
310
4
350
6
410
8
390
10
330
12
400
Use a midpoint Riemann sum with 3 equal subintervals to estimate the average velocity over the first 12 minutes of his
bike ride.
12. The expression
1
π‘₯
1
1 3
(( )
100
100
3
a. ∫0 (100) 𝑑π‘₯
b.
2 3
)
100
+(
3 3
)
100
+(
100 3
) )
100
+ β‹―+ (
1 π‘₯ 3
1
( ) 𝑑π‘₯
∫
100 0 100
100
c. ∫0
is a Riemann sum approximation for
1
π‘₯ 3 𝑑π‘₯
d. ∫0 π‘₯ 3 𝑑π‘₯
𝑏
𝑏
13. A trapezoidal sum under-approximates βˆ«π‘Ž 𝑓(π‘₯)𝑑π‘₯ ⁑and a left Riemann sum over-approximates βˆ«π‘Ž 𝑓(π‘₯)𝑑π‘₯ , sketch a
possible graph of 𝑓(π‘₯) over the interval [a,b].
11. The table gives the velocity of Joe riding his bike, in meters per minute, over the first 12 minutes of his bike ride.
x
f(x)
0
0
2
310
4
350
6
410
8
390
10
330
12
400
Use a midpoint Riemann sum with 3 equal subintervals to estimate the average velocity over the first 12 minutes of his
bike ride.
1
1
3
2
3
3
3
100 3
12. The expression 100 ((100) + (100) + (100) + β‹― + (100) ) is a Riemann sum approximation for
1
π‘₯
3
a. ∫0 (100) 𝑑π‘₯
b.
1 π‘₯ 3
1
( ) 𝑑π‘₯
∫
100 0 100
100
c. ∫0
𝑏
π‘₯ 3 𝑑π‘₯
1
d. ∫0 π‘₯ 3 𝑑π‘₯
𝑏
13. A trapezoidal sum under-approximates βˆ«π‘Ž 𝑓(π‘₯)𝑑π‘₯ ⁑and a left Riemann sum over-approximates βˆ«π‘Ž 𝑓(π‘₯)𝑑π‘₯ , sketch a
possible graph of 𝑓(π‘₯) over the interval [a,b].