Riemann Sums Practice Express as the limit of a Riemann sum in Sigma notation Example: π 5 3π 3 β« 7π₯ππ₯ = lim β 7 (2 + ) β πββ π π 2 1. 2. 3. π=1 Name_______________________________________ 2 3 β« βπ₯ ππ₯ 0 1 π β« cosβ‘(π₯)ππ₯ β« β2 + π₯ππ₯ 0 0 4. 5. 2 5 β« π₯ 2 ππ₯ β« βπ₯ 1 3 6. 7. 2 5 β« β4π₯ππ₯ β« 2βπ₯ππ₯ 0 0 8. 9. 5 5 β« 2π₯ 4 ππ₯ β« π₯ππ₯ 4 1 x 0 2 4 6 8 f(x) 0 2 8 11 15 10. The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,8], 8 which of the following could be the value of β«0 π(π₯)ππ₯ ? a. 8 b. 42 c. 68 d. 72 e. 80 Riemann Sums Practice Express as the limit of a Riemann sum in Sigma notation Example: π 5 3π 3 β« 7π₯ππ₯ = lim β 7 (2 + ) β πββ π π 2 1. 2. 3. π=1 Name_______________________________________ 2 3 β« βπ₯ ππ₯ 0 1 β« β2 + π₯ππ₯ π β« cosβ‘(π₯)ππ₯ 0 0 4. 5. 2 β« βπ₯ 5 β« π₯ 2 ππ₯ 1 3 6. 7. 2 5 β« 2βπ₯ππ₯ β« β4π₯ππ₯ 0 0 8. 9. 5 β« π₯ππ₯ 4 5 β« 2π₯ 4 ππ₯ 1 x 0 2 4 6 8 f(x) 0 2 8 11 15 10. The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,8], 8 which of the following could be the value of β«0 π(π₯)ππ₯ ? a. 8 b. 42 c. 68 d. 72 e. 80 11. The table gives the velocity of Joe riding his bike, in meters per minute, over the first 12 minutes of his bike ride. x f(x) 0 0 2 310 4 350 6 410 8 390 10 330 12 400 Use a midpoint Riemann sum with 3 equal subintervals to estimate the average velocity over the first 12 minutes of his bike ride. 12. The expression 1 π₯ 1 1 3 (( ) 100 100 3 a. β«0 (100) ππ₯ b. 2 3 ) 100 +( 3 3 ) 100 +( 100 3 ) ) 100 + β―+ ( 1 π₯ 3 1 ( ) ππ₯ β« 100 0 100 100 c. β«0 is a Riemann sum approximation for 1 π₯ 3 ππ₯ d. β«0 π₯ 3 ππ₯ π π 13. A trapezoidal sum under-approximates β«π π(π₯)ππ₯ β‘and a left Riemann sum over-approximates β«π π(π₯)ππ₯ , sketch a possible graph of π(π₯) over the interval [a,b]. 11. The table gives the velocity of Joe riding his bike, in meters per minute, over the first 12 minutes of his bike ride. x f(x) 0 0 2 310 4 350 6 410 8 390 10 330 12 400 Use a midpoint Riemann sum with 3 equal subintervals to estimate the average velocity over the first 12 minutes of his bike ride. 1 1 3 2 3 3 3 100 3 12. The expression 100 ((100) + (100) + (100) + β― + (100) ) is a Riemann sum approximation for 1 π₯ 3 a. β«0 (100) ππ₯ b. 1 π₯ 3 1 ( ) ππ₯ β« 100 0 100 100 c. β«0 π π₯ 3 ππ₯ 1 d. β«0 π₯ 3 ππ₯ π 13. A trapezoidal sum under-approximates β«π π(π₯)ππ₯ β‘and a left Riemann sum over-approximates β«π π(π₯)ππ₯ , sketch a possible graph of π(π₯) over the interval [a,b].
© Copyright 2026 Paperzz