COLLEGE ALGEBRA II (MATH 010) SPRING 2012 PRACTICE FOR EXAM II SOLUTIONS 1. Expand the following logarithms. x2 −x−2 (x+4)2 1 3 , x > 2 (b) ln(xex ) (a) ln Solution: 1 x2 −x−2 = 13 ln [(x − 2)(x + 1)] − 13 ln(x + 4)2 (a) 3 ln (x+4)2 = 13 ln(x − 2) + 13 ln(x + 1) − 23 ln(x + 4) (b) ln x + ln ex =ln x + x ln e = ln x + x 2. Write each as a single logarithm. x 2 )+ln( x+1 (a) 3 log5 u+4 log5 v (b) ln( x−1 x )−ln(x −1) Solution: (a) logh5 u3 v 4 i x x+1 (b) ln ( x−1 )( x+1 ) − ln(x2 − 1) = ln "x−1 − ln [(x − 1)(x + 1)] x # x+1 ( x−1 ) (x−1)(x+1) 1 ln (x−1)2 = ln = = −2 ln(x − 1) 3. Evaluate using the change-of-base formula. (a) log3 21 (b) log 31 71 Solution: 21 71 71 (a) log (b) log = − log log 3 log 3 log 1 3 1 4. Solve each exponential equation. (a) ( 35 )x = 71−x (b) 2x−5 = 8 Solution: (a) ln( 35 )x = ln 71−x x ln( 53 ) = (1 − x) ln 7 x ln( 35 ) + x ln 7 = ln 7 7 x = ln( 3ln+ln ≈ 1.356 7) 5 (b) log2 2x−5 = log2 23 x−5 =3 x =8 5. Solve each logarithmic equation. (a) log2 (5x) = 4 (b) log2 (x + 7) + log2 (x + 8) = 1 Solution: (a) 5x = 24 x = 16 5 (b) log2 [(x + 7)(x + 8)] = 1 (x + 7)(x + 8) = 21 x2 + 15x + 54 = 0 (x + 6)(x + 9) = 0 Solution (b) is x = −6 since x = −9 is extraneous. 2 6. The half-life of radium-226 is 1600 years. Suppose we have a 22 mg sample. (a) Find a function m(t) = m0 e−rt that models the mass remaining after t years. (r = lnh2 ) (b) After how long will only 18 mg of the sample remain? Solution: ln 2 t − 1600 (a) m(t) = 22e = 22e−.000433t (b) 18 = 22e−.000433t ln 9 = ln 11 − .000433t ln e 1 9 t = − .000433 ln( 11 ) ≈ 463 yrs 7. A bowl of soup begins to cool according to Newton’s Law of Cooling. Its temperature at time t is given by T (t) = 65 + 145e−0.05t where t is measured in minutes and T is measured in o F. (a) What is the initial temperature of the soup? (b) After how long will the temperature be 100o F? Solution: (a) T (0) = 65 + 145e−0 = 210 (b) 100 35 −.05t t = 65 + 145e−.05t = 145e−.05t 35 = ln( 145 ) 7 = −20 ln( 29 ) ≈ 28 3 8. Solve each system of equations. (a) x + y =8 x − y =4 (b) 2x + y = 1 4x + 2y = 3 Solution: (a) x y+4+y 2y y x =y+4 =8 =4 =2 =2+4=6 Solution:(6, 2) (b) y = 1 − 2x 4x + 2(1 − 2x) = 3 2 =3 Inconsistent (c) x 2(4 − 2y) + 4y 8 y x = 4 − 2y =8 =8 =t = 4 − 2t Solution: (4 − 2t, t) 4 (c) x + 2y = 4 2x + 4y = 8 9. Solve the following system of equations. x − 2y + 3z =7 2x + y + z =4 −3x + 2y − 2z = −10 Solution: x − 2y + 3z =7 5y − 5z = −10 − 4y + 7z = 11 x − 2y + 3z =7 y − z = −2 3z =3 z =1 y = 1 − 2 = −1 x = 7 + 2(−1) − 3(1) = 2 Solution:(2, −1, 1) 5 10. Solve each system of equations. (a) x − y − z =1 −x + 2y − 3z = −4 3x − 2y − 7z =0 (b) Solution: (a) x − y − z =1 y − 4z = −3 y − 4z = −3 x − y − z =1 y − 4z = −3 0 =0 z =t y = 4t − 3 x = 5t − 2 (b) 2x − 2y + 3z =6 y − 4z = −12 y − 4z =7 2x − 2y + 3z =6 y − 4z = −12 0 = 19 Inconsistent 6 2x − 2y + 3z = 6 4x − 3y + 2z = 0 −2x + 3y − 7z = 1 11. Solve each system using matrices. (a) x + y =8 x − y =4 (b) x + 2y = 4 2x + 4y = 8 Solution: (a) 1 1 | 8 1 −1 | 4 R2−R1−>R2 → 1 1 | 8 0 1 | 2 1 1 | 8 0 −2 | −4 R1−R2−>R1 → (− 21 )R2 1 0 | 6 0 1 | 2 1 2 | 4 0 0 | 0 x = 6, y = 2 (b) 1 2 | 4 2 4 | 8 R2−2R1−>R2 → y = t, x = 4 − 2t 7 → 12. Solve the following system using a matrix. x − y =6 2x − 3z = 16 2y + z = 4 Solution: 1 −1 0 | 6 2 0 −3 | 16 0 2 1 | 4 R2−2R1−>R2 → 1 −1 0 | 6 0 2 −3 | 4 0 0 4 | 0 1 −1 0 | 6 0 1 − 32 | 2 0 0 1 | 0 1 2 R2 → 1 −1 0 | 6 0 1 − 32 | 2 0 0 4 | 0 R2+ 3 R3−>R2 2 → 1 0 0 | 8 0 1 0 | 2 0 0 1 | 0 R3−R2−>R3 → 1 4 R3 → 1 −1 0 | 6 0 1 0 | 2 0 0 1 | 0 x = 8, y = 2, z = 0 8 1 −1 0 | 6 0 2 −3 | 4 0 2 1 | 4 R1+R2−>R1 → 13. Solve each system using a matrix. (a) 2x − 2y − 2z = 2 2x + 3y + z = 2 3x + 2y = 0 (b) −x + y + z = −1 −x + 2y − 3z = −4 3x − 2y − 7z =0 Solution: (a) 2 −2 −2 | 2 2 3 1 | 2 3 2 0 | 0 1 −1 −1 | 1 0 5 3 | 0 3 2 0 | 0 1 2 R1 → 1 −1 −1 | 1 2 3 1 | 2 3 2 0 | 0 R3−3R1−>R3 → 1 −1 −1 | 1 0 5 3 | 0 0 0 0 | −3 R2−2R1−>R2 → 1 −1 −1 | 1 0 5 3 | 0 0 5 3 | −3 R3−R2−>R3 → Inconsistent (b) −1 1 1 | −1 −1 2 −3 | −4 3 −2 −7 | 0 1 −1 −1 | 1 0 1 −4 | −3 3 −2 −7 | 0 −R1 → 1 −1 −1 | 1 −1 2 −3 | −4 3 −2 −7 | 0 R3−3R1−>R3 → 1 −1 −1 | 1 0 1 −4 | −3 0 0 0 | 0 R2+R1−>R2 → 1 −1 −1 | 1 0 1 −4 | −3 0 1 −4 | −3 z = t, y = 4t − 3, x = 5t − 2 9 R3−R2−>R3 → 14. Use the following matrices to compute the given expression, if possible. A= 0 3 −5 1 2 6 (a) A + B (f) CA Solution: B= (b) B + C 4 1 0 −2 3 −2 (c) −2A (d) AB (a) A + B = 4 4 −5 −1 5 4 (b) B + C = undefined (c) − 2A = 0 −6 10 −2 −4 −12 (d) AB = undefined (e) BC = (f) CA = 10 22 6 14 −2 1 14 −14 2 22 −18 3 0 28 C= 4 1 6 2 −2 3 (e) BC 15. Perform the following operations using the given matrices, if possible. D= 3 2 1 (a) DE (b) EF Solution: (a) DE = E= −2 −1 F = 4 −4 3x 2x 2y 4z −6 −3 −4 −2 −2 −1 (b) EF = −4 (c) F E = − y + z + w =6 − 3z + 2w = 1 + z − 5w = 4 − 4w = 5 Solution: (c) F E 16. Write the following system in matrix notation. 3 −1 1 1 2 0 −3 2 0 2 1 −5 0 0 4 −4 11 x y z w = 6 1 4 5 −8 −4 8 4
© Copyright 2026 Paperzz