PIANO Test Method Description

An American National Standard
Designation: D 6729 – 04e1
Standard Test Method for
Determination of Individual Components in Spark Ignition
Engine Fuels by 100 Metre Capillary High Resolution Gas
Chromatography1
This standard is issued under the fixed designation D 6729; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
e1 NOTE—Corrected 6.3 editorially in March 2008.
present. Samples containing significant amounts of olefinic or
naphthenic (for example, virgin naphthas), or both, constituents above n-octane may reflect significant errors in PONA
type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this procedure is applicable to
samples containing less than 25 mass % of olefins. However,
some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher
boiling cuts such as those derived from fluid catalytic cracking
(FCC) are analyzed, and the total olefin content may not be
accurate.
1.4.1 Total olefins in the samples may be obtained or
confirmed, or both, if necessary, by Test Method D 1319
(volume %) or other test methods, such as those based on
multidimensional PONA type of instruments.
1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test
Method D 1744, or equivalent. Other compounds containing
oxygen, sulfur, nitrogen, and so forth, may also be present, and
may co-elute with the hydrocarbons. If determination of these
specific compounds is required, it is recommended that test
methods for these specific materials be used, such as Test
Methods D 4815 and D 5599 for oxygenates, and D 5623 for
sulfur compounds, or equivalent.
1.6 Annex A1 of this test method compares results of the
test procedure with other test methods for selected components, including olefins, and several group types for several
interlaboratory cooperative study samples. Although benzene,
toluene, and several oxygenates are determined, when doubtful
as to the analytical results of these components, confirmatory
analyses can be obtained by using specific test methods.
1.7 The values stated in SI units are to be regarded as the
standard. The values given in parentheses are provided for
information purposes only.
1. Scope*
1.1 This test method covers the determination of individual
hydrocarbon components of spark-ignition engine fuels and
their mixtures containing oxygenate blends (MTBE, ETBE,
ethanol, and so forth) with boiling ranges up to 225°C. Other
light liquid hydrocarbon mixtures typically encountered in
petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed;
however, statistical data was obtained only with blended
spark-ignition engine fuels.
1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the
range of 0.01 to approximately 30 mass %. The procedure may
be applicable to higher and lower concentrations for the
individual components; however, the user must verify the
accuracy if the procedure is used for components with concentrations outside the specified ranges.
1.3 The test method also determines methanol, ethanol,
t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether
(ETBE), t-amyl methyl ether (TAME) in spark ignition engine
fuels in the concentration range of 1 to 30 mass %. However,
the cooperative study data provided sufficient statistical data
for MTBE only.
1.4 Although a majority of the individual hydrocarbons
present are determined, some co-elution of compounds is
encountered. If this test method is utilized to estimate bulk
hydrocarbon group-type composition (PONA) the user of such
data should be cautioned that some error will be encountered
due to co-elution and a lack of identification of all components
1
This test method is under the jurisdiction of ASTM Committee D02 on
Petroleum Products and Lubricants and is the direct responsibility of Subcommittee
D02.04.0L on Gas Chromatography Methods.
Current edition approved Nov. 1, 2004. Published November 2004. Originally
approved in 2001. Last previous edition approved in 2001 as D 6729–01.
*A Summary of Changes section appears at the end of this standard.
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
1
D 6729 – 04e1
6. Apparatus
1.8 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
6.1 Gas Chromatograph, a gas chromatograph equipped
with cryogenic column oven cooling and capable of producing
repeatable oven ramps from 0° to at least 300°C is required.
The following features are useful during the sample analysis
phase: electronic flow readout, electronic sample split-ratio
readout, and electronic pneumatic control of flow. Though their
use is not required, careful review of this test method will
demonstrate the usefulness of a gas chromatograph equipped
with these features. These features will replace the need to
carry out the manual calculations that must be performed as
listed in 8.1 and 8.2.
6.2 Inlet—a capillary split/splitless inlet system operated in
the split mode is recommended. It must be operated in its linear
range. Refer to 8.4 to determine the proper split ratio.
6.2.1 Carrier Gas Pneumatic Control—Constant carrier gas
pressure control was used by all cooperative study participants.
This may be either direct pressure to the inlet (injector) or by
using a total flow/back pressure system.
6.2.2 Pneumatic Operation of the Chromatograph—The
use of constant pressure was the mode of operating the gas
chromatography used by the participants in the interlaboratory
cooperative study. Other carrier gas control methods such as
constant flow (pressure programming) may be used, but this
may change the chromatography elution pattern unless the
temperature programming profile is also adjusted to compensate for the flow differences.
6.2.3 Temperature Control—The injector operated in the
split mode shall be heated by a separate heating zone and
heated to temperatures of 200 to 275°C.
6.3 Column, a fused silica capillary column, 100 m in length
by 0.25 mm inside diameter, coated with a 0.5 µm film of
bonded dimethylpolysiloxane. The column must meet the
resolution requirements expressed in 8.3. Columns from two
different commercial sources were used in the interlaboratory
cooperative study.
6.4 Data System, a computer based chromatography data
system capable of accurately and repeatedly measuring the
retention time and areas of eluting peaks. The system shall be
able to acquire data at a rate of at least 10 Hz. Although it is not
mandatory, a data system which calculates column resolution
(R) is extremely useful as it will replace the need to carry out
the manual calculations which must be performed as listed in
8.3.
6.4.1 Electronic Integrators, shall be capable of storing up
to 400 components in the peak table and shall be able to
acquire the data at 10 Hz or faster speeds. They shall be
capable of integrating peaks having peak widths at half height
which are 1.0s wide. The integrator must be capable of
displaying the integration mode of partially resolved peaks. In
addition, these integrators should be able to download a
commonly readable format of data (that is, ASCII) to a
computer in order to facilitate data processing.
6.5 Sample Introduction—Sample introduction by way of a
valve, automatic injection device, robotic arm or other automatic means is highly recommended. An automatic sample
introduction device is essential to the reproducibility of the
analysis. Manual injections are not recommended. All of the
2. Referenced Documents
2.1 ASTM Standards: 2
D 1319 Test Method for Hydrocarbon Types in Liquid
Petroleum Products by Fluorescent Indicator Adsorption
D 1744 Test Method for Determination of Water in Liquid
Petroleum Products by Karl Fisher Reagent3
D 4815 Test Method for Determination of MTBE, ETBE,
TAME, DIPE, t-Amyl Alcohol and C1 to C4 Alcohols in
Gasoline by Gas Chromatography
D 5599 Test Method for Determination of Oxygenates in
Gasoline by Gas Chromatography and Oxygen Selective
Flame Ionization Detection
D 5623 Test Method for Sulfur Compounds in Light Petroleum Liquids by Gas Chromatography and Sulfur Selective Detection
E 355 Practice for Gas Chromatography Terms and Relationships
3. Terminology
3.1 Definitions—This test method makes reference to many
common gas chromatographic procedures, terms, and relationships. Detailed definitions can be found in Practice E 355.
4. Summary of Test Method
4.1 Representative samples of the petroleum liquid are
introduced into a gas chromatograph equipped with an open
tubular (capillary) column coated with the specified stationary
phase. Helium carrier gas transports the vaporized sample
through the column, in which it is partitioned into individual
components which are sensed with a flame ionization detector
as they elute from the end of the column. The detector signal
is recorded digitally by way of an integrator or integrating
computer. Each eluting component is identified by comparing
its retention time to that established by analyzing reference
standards or samples under identical conditions. The concentration of each component in mass % is determined by
normalization of the peak areas after correction of selected
components with detector response factors. The unknown
components are reported individually and as a summary total.
5. Significance and Use
5.1 Knowledge of the specified individual component composition (speciation) of gasoline fuels and blending stocks is
useful for refinery quality control and product specification.
Process control and product specification compliance for many
individual hydrocarbons may be determined through the use of
this test method.
2
For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at [email protected]. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
3
Withdrawn.
2
D 6729 – 04e1
reproducibility data reported by this test method for the
samples analyzed were gathered using automatic injection
devices.
6.6 Flame Ionization Detector (FID)—The gas chromatograph should possess a FID having a sensitivity of 0.005
coulombs/g for n-butane. The linear dynamic range of the
detector should be 106 or better. The detector is heated to
300°C.
where:
F
=
r
=
L
=
=
Pi
Po =
Pref =
T
=
Tref =
µ
=
7. Reagents and Materials
7.1 Calibrating Standard Mixture—A spark ignition engine
fuel standard of known composition and concentration by mass
can be used. In order to corroborate the identification of the
sample, a typical chromatogram (Fig. 1) was obtained from
reference sample ARC96OX.4
7.2 Gas Chromatograph Gases—All of the following gases
shall have a purity of 99.999 % (V/V) or greater.
split ratio 5 S 5
7.2.1 Helium—The test data was developed with helium as
the carrier gas. It is possible that other carrier gases may be
used for this test method. At this time, no data is available from
this test method with other carrier gases.
7.2.2 Air, Hydrogen and Make-up Gas (Helium or Nitrogen), shall have a purity of 99.999 % (V/V) or greater.
R5
~T!3~Pref!~Pi2 – Po2!µ
2~tR2 – tR1!
1.699 ~Wh1 1 Wh2!
(4)
resolution,
retention time of the first member of the pair,
retention time of the second member of the pair,
peak width at half height of the first member of the
pair, and
Wh2 = peak width at half height of the second member of
the pair.
8.3.1.1 Column resolution should be checked frequently by
examining the resolution of these compounds.
8.3.2 Evaluation of the Baseline—Carry out a blank baseline run utilizing no solvent injection, by setting the GC in
accordance with the conditions of Table 1.
8.3.3 Subtract the baseline from a sample chromatogram
and verify that the residual signal at the beginning of the
chromatogram does not differ from the end of the chromatogram by more than 2 %.
8.4 Evaluation of Splitter Linearity—Using the reference
gasoline sample, inject this sample according to the schedule
listed in Table 3.
8.4.1 Select from the chromatogram about 10 to 15 components, which have concentrations in the range of .01 to 30
weight %. Tabulate for each split ratio the concentrations of the
10 to 15 components. Verify that for each component selected,
its concentration does not vary by more than 3 %.
(1)
8.1.3 The typical retention times for methane and linear gas
velocity for helium are 6.5 to 6.8 and 24 to 26 cm/s,
respectively.
8.2 Setting the Split Ratio—If the gas chromatograph is
equipped with an electronic split-ratio readout device, set the
split ratio to a sample split of 200:1. If the gas chromatograph
is not equipped with an electronic split-ratio readout device,
one must first calculate column flow rate and then proceed to
calculating split ratio using Eq 2 and 3.
column flow rate 5 F 5
(3)
where:
R
=
=
tR2
=
tR1
Wh1 =
8. Instrument Check Out Prior to Analysis
8.1 Setting:
8.1.1 Linear Gas Velocity—If the gas chromatograph is
equipped with an electronic flow readout device, set the flow to
1.8 mL/min. This is achieved by setting the carrier gas flow
rate by injection of methane or natural gas at 35°C. Ensure that
the retention time is 7.00 6 0.05 min. This corresponds to a
linear velocity of 25 to 26 cm/s. This is equivalent to retention
times of methane at 0°C ranging from 6.5 to 6.8 min.
8.1.2 If the gas chromatograph is not equipped with an
electronic flow readout device, calculate the linear gas velocity
in cm/s using Eq 1.
~60 p r2! L~Tref! 2~Pi – Po!
split vent flow 1 F
F
8.2.1 The column flow rate is calculated by the use of Eq 2.
Use the results obtained from Eq 3 to adjust the split flow until
a split flow of approximately 200:1 is achieved.
8.3 Evaluation of Column Performance:
8.3.1 Prior to using the column described in Table 1,
measure the resolution of the column under the conditions of
Table 2. Check that the resolution for the following pairs of
components is obtained using Eq 4 to calculate the resolution
of a pair of components:
NOTE 1—Warning: Gases are compressed. Some are flammable and all
gases are under high pressure.
column length ~cm!
linear gas velocity 5 V 5 retention time of methane~s!
flow rate as calculated by using the equation,
column radius, cm,
column length, cm,
inlet pressure,
outlet pressure,
reference pressure, 1 atm,
temperature of the column oven,
temperature at the column outlet, and
linear velocity, cm/s.
9. Procedure
9.1 Set the operating conditions of the gas chromatograph as
shown in Table 1. These conditions will elute all components
up to and including pentadecane (nC15).
9.2 All of the parameters in Table 1 can be marginally
changed to optimize for sample types and optimize for characteristics of each gas chromatographic system. The final
boiling point of samples should not exceed nC15 and the
(2)
4
Reference spark ignition sample No. ARC 960X obtained from the Alberta
Research Council, Edmonton, Alberta, Canada. Other samples are available from
suppliers.
3
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline
of sample into it. Cool the sample to less than 4°C, maintain at
that approximate temperature until the autosampler is loaded
and analysis begins.
9.4 Preparation/Storage:
9.4.1 Samples Stored in Vials—Cool the original sample to
less than 4°C prior to taking a sample aliquot or prior to filling
column resolution (R) performance requirements listed in
Table 2 should not be compromised.
9.3 Obtain a representative sample following the guidelines
of Practice D 4057 and any other applicable guidelines. Take
precautions to minimize the loss of light ends from volatile
samples. The sample container may be cooled prior to transfer
4
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline (continued)
the sample vials. The sample aliquot container, or the vial, or
both, can also be cooled prior to the transfer of the original
sample. Syringes may also be cooled along with the sample for
manual injections.
9.4.2 Samples Stored in Pressurized Containers—It is recommended that they be kept away from direct heat or light. No
other sample preparations are necessary for samples stored in
pressurized containers. Avoid storage at temperatures greater
than 25°C. Store pressure containers in accordance with the
manufacturer’s instructions.
9.5 It is recommended that a quality assurance (QA) sample
similar to the reference material gasoline sample be run at
5
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline (continued)
regular intervals (see Fig. 1). An interval of once per week or
after every 15 samples is recommended. The quantitation
results use statistical quality control charts can track benzene.
Other components of interest in the reference sample can be
tracked in a similar manner. By monitoring these components
over an extended period of time, the performance of the
column and the chromatographic system can be determined.
6
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline (continued)
10. Data Analysis
10.1 Compound Identification—Prepare a table listing all of
the retention times of the components in the sample. Compare
the retention time of each peak with that of the reference
gasoline. Pay particular attention to the fact that columns can
be overloaded, and peaks can shift in retention time. Observe
the peak pattern so that proper identification is made by
comparison with the reference material.
10.2 Consistency in peak identification can be achieved by
using software (data handling software, spreadsheet software,
and so forth). Alternatively, a retention index system can be
used.
7
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline (continued)
8
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline (continued)
9
D 6729 – 04e1
FIG. 1 Chromatogram for Reference Spiked Gasoline (continued)
10
D 6729 – 04e1
TABLE 1 Chromatographic Operating Conditions, Column Requirements and Data Acquisition Requirements
Chromatographic Conditions
Requirements
Injector settings
Injector temperature, °C
Split ratio
Liner
Injection volume, µL
Detector settings
FID detector temperature, °CA
Gas flows
Hydrogen, mL/minB
Air, mL/min
Nitrogen make up, mL/min
Column oven settings
Initial temperature, °C
Initial time, min
1st ramp rate, °C/min
Final temperature, °C
Final time, min
2nd ramp rate, °C/min
Final temperature, °C
Final time, min
3rd ramp rate, °C/min
Final temperature, °C
Final time, minC
Column Requirements
Length, m
Inside diameter, mm
Liquid phase
Film thickness, µ
Pressure, psig
Flow, mL/min
Linear gas velocity, cm/s
Data acquisition, Hz
Total analysis time, min
A
B
C
250
175:1 - 275:1
deactivated glass
0.2–0.5
300–350
30–40
300–450
30
0
15
1
50
0
2
130
0
4
270
0
100
0.25
100 % dimethylpolysiloxane
0.5
40–50
1.7–2.0
24.5
10–20
140–150
Set to 25–50°C above the highest column temperature.
Values to be set as recommended by instrument manufacturer.
Final temperature or time may be adjusted to ensure complete elution of the sample components.
TABLE 2 Resolution Performance Requirements
Component
Pair
Minimum
Resolution
Benzene
1-Methyl-cyclopentene
m-Xylene
p-Xylene
n-Tridecane
1-Methylnaphthalene
1.0
0.5 %–0.5 %
0.4
2.0 %–2.0 %
1.0
0.5 %–0.5 %
where:
(R1)i = retention index of component I bracketed by the
N-paraffin, n in its lower boundary and N-paraffin N
in its upper boundary,
= adjusted retention time of component i (retention
Ti
time of component i minus the retention time of
methane),
= adjusted retention time of N-paraffin n, and
Tn
TN
= retention time of N-paraffin N.
10.3 Determine the hydrocarbon response factors by using
the following equation.5
Concentration of Each
Component, W/W
TABLE 3 Injection Schedule
Split Ratio
100:1
200:1
300:1
Injection Volume,
µL
Injection Temperature,
°C
0.1
0.5
1.0
250
250
250
~R1!i 5 100n 1 100
F
log ~Ti! – log ~Tn!
log ~TN! – log ~Tn!
G
MWi
1
RRFCH4 5 N 3 MW
c
CH4
(5)
5
11
Sevcik, J., Detectors in Gas Chromatography, Elsevier, NY, 1976, p 94.
(6)
D 6729 – 04e1
TABLE 4 Predominant Compounds and Identified Coeluting CompoundsA
NOTE—The response factor of the predominant compound will be used for the analyte and this analyte will be used for the calculations.
A
B
Peak Number
(from Annex A1)
Predominant
Compound
Coeluting
Compound(s)
164
186
278
286
304
324
326
492
796
3,3-dimethylpentane
2-methylhexane
2,5-dimethylhexane
3,3-dimethylhexane
toluene
1,1,2-trimethylcyclopentane
C8-diolefin
4-methyloctane
1,2,3,4-tetramethylbenzene
5-methyl-1-hexene
C7-olefin
C8-olefin
C8-olefin
2,3,3-trimethylpentaneB
C7-triolefin
C8-paraffin
C9-olefin
C11-aromatic
This is not an exhaustive list. Due to the possibility of coeluting peaks in other areas, the user is cautioned in the interpretation of the data.
In most alkylated gasolines, a split may occur between toluene and 233 TMC5.
TABLE 5 Response Factors of Oxygenated Compounds
Relative Response Factors
Analytes
RRF C7= 1.000
RRF CH4= 1.000
2.996
2.087
1.302
1.577
1.407
1.356
2.672
1.862
1.161
1.407
1.255
1.210
Methanol
Ethanol
t-Butanol (TBA)
Methyl-t-butyl ether (MTBE)
Ethyl-t-butyl ether (ETBE)
t-Amyl methyl ether (TAME)
concentration ranges from 1.0 mass % up to 30 mass % (Annex
A2). The average relative response factors for the oxygenates
were calculated from the study and are listed in Table A2.1.
They have been incorporated into the IHA Method. The
percent standard deviation of these relative response values
was as high as 7 %. MTBE was the only oxygenate that was
present in sufficient number of samples to meet the ASTM
requirements for round robin testing in accordance with RR:
D02-1007. Therefore the statistical data for MTBE should be
taken from Table A1.2.
where:
RRFCH4
= relative response factor of each component
with respect to methane (RRFCH4=1.000),
= molecular weight of the component, i,
MWi
= number of carbon atoms in the molecule, and
Nc
MWCH4 = molecular weight of methane (16.04276).
10.4 Convert the acquired areas to corrected areas by
multiplying each area by its corresponding relative response
factor as indicated in the following equation.
Aci 5 ~A!I ~RRF!I
(7)
where:
(Ac)i = corrected area,
= acquired area for an individual component, and
Ai
RRF = relative response factor (weight basis).
10.4.1 The percent weight (% W) is calculated as follows:
~AC!i
3 100
% Wi 5 i 5 n
( Aci
12. Expression of Results
12.1 Report the concentration of each components as mass
% (m/m) to the nearest 0.001 %.
12.2 The data for individual components may by grouped
by summing the concentration of compounds in each particular
group type such as paraffin, isoparaffin, olefin, aromatic,
naphthene, oxygenates, and unknowns. Commercially available software may be used to provide this function, as well as
the calculation of other properties of petroleum liquids.
(8)
i51
where:
%W
i5n
( Ac
i51
i
= percent weight of the component i in the
mixture, and
= summation of all the corrected areas for
the components analyzed.
13. Precision and Bias
6
13.1 The repeatability and reproducibility precision estimates are quoted in Annex A1.
13.2 Precision Statement Outline—(> Analyte Qualification
Process):
13.2.1 For each analyte to qualify for a precision statement,
it must be present in at least six samples, and detected by at
10.4.1.1 The subscript i indicates that the operations are
carried out for each individual component in the matrix.
10.5 In the case of unidentified components, utilize a
relative response factor of 0.800 (relative to methane).
11. Oxygenates
11.1 A cooperative study for linearity was performed for
methanol, ethanol, t-butanol, methyl-t-butyl ether (MTBE),
ethyl-t-butyl ether (ETBE), and t-amyl methyl ether (TAME) in
6
Supporting data describing the interlaboratory cooperative study to determine
precision and bias has been filed at ASTM International Headquarters and may be
obtained by requesting RR: D02-1519.
12
D 6729 – 04e1
least six laboratories, at least once, in accordance with RR:
D02-10077 requirements.
13.2.2 The (repeatability standard deviation)/mean value for
each analyte/sample combination must be less than or equal to
0.1, in accordance with LOQ requirements which, while not a
standard, is what CS94 is recommending.
13.3 A brief explanation of headers in Table A1.2 follows:
13.3.1 ID: self explanatory,
13.3.2 rmin: lower 95 % confidence limit of rest,
13.3.3 rest: repeatability estimate in percentage of concentration,
13.3.4 rmax: upper 95 % confidence limit of rest,
13.3.5 Rmin, Rest, Rmax: same as above except for reproducibility,
13.3.6 Cmin: lower concentration limit that rest, Rest is
applicable, and
13.3.7 Cmax: upper concentration limit that rest, Rest is
applicable.
13.4 The summaries for the paraffins, isoparaffins, C2 benzene, and oxygenates follow the same procedure that was used
for the analytes and are listed in Table A1.3.
13.5 Bias—The bias of this test method cannot be determined since an appropriate standard reference material is not
available.
7
Supporting data have been filed at ASTM International Headquarters and may
be obtained by requesting Research Report RR: D02–1007.
14. Keywords
14.1 gas chromatograph; gasoline; individual hydrocarbon
analysis; oxygenated fuels; spark-ignition engine fuels
ANNEXES
(Mandatory Information)
A1. HYDROCARBON DATA
A1.1 Table A1.1 presents the component retention times
and properties.
A1.4 The precision statement for the olefins and cycloparaffins is determined by taking the square root of the value
determined in the summary; multiply by the coefficient (rcoef)
for repeatability and the coefficient (Rcoef) for the reproducibility.
A1.2 Table A1.2 represents the repeatability and reproducibility precision estimates prepared by statisticians of CS94 in
accordance with RR: D02-1007. The analyte qualification
process for precision statements is outlined as follows:
A1.2.1 For each analyte to qualify for a precision statement,
it must be present in at least six samples, and detected by at
least six laboratories, at least once, in accordance with RR:
D02-1007 requirements.
A1.2.2 The (repeatability standard deviation)/mean value
for each analyte/sample combination must be less than or equal
to 0.1, in accordance with LOQ requirements which, while not
a standard, is what CS94 is recommending.
Name
Cycloparaffins
Olefins
No. of
Samples
2
2
6
1
1
rcoef
0.08
0.18
rmax
0.098
0.21
Rmin
0.286
0.382
Rcoef
0.384
0.555
Rmax
0.586
1.012
Cmin
2
2
Cmax
10
25
A1.5 The precision for the aromatics does not depend on
level and is stated below in weight %.
Name
Aromatics
rmin
0.8549
r%
0.98
rmax
1.155
Rmin
2.151
R%
2.706
Rmax
3.651
Cmin
15
Cmax
50
A1.6 The summaries for the paraffins, isoparaffins,
C2benzene and oxygenates follow the same procedure that was
used for the analytes. The statistics for the grouping are shown
in Table A1.3 as an indication of reproducibility and repeatability of reporting the results as a group summary. However,
there is a possibility that significant error could occur due to
co-elution of peaks, the presence of significant amounts of
olefinic or naphthenic constituents, or both, above octane and
the percent unknown in the sample. If more accurate summary
results are needed that are not covered by the above precision
statement, for some or all of the above families of components,
please consider another ASTM test method.
A1.3 Summary for Oxygenates: Warning—The statistical
data could be done on the oxygenates but there was not an
equal number of all oxygenates in the round robin. MTBE was
the largest contributor to the statistical results. The number of
samples that contained each oxygenate is as follows:
Oxygenate
Type
Ethanol
t-butanol
MTBE
ETBE
TAME
rmin
0.0726
0.1555
Approximate
Concentration Range
1 %, and 12 %
.20 %, and 1.0 %
1, 2, 4, 4, 8 and 16 %
0.50 %
15.00 %
13
D 6729 – 04e1
TABLE A1.1 Component Retention Times and Properties
NOTE 1—The names used are from several other tables and changes have been made where the GCMS did not agree with the peak name or its retention
time.
NOTE 2—n-propanol will coelute with 3M-1-C5=.
NOTE 3—MTBE will coelute with 23DN-1C4=.
NOTE 4—MSBE will coelute with 1-hexene.
NOTE 5—ETBE will coelute with 23DM-13C4= =.
NOTE 6—isobutanol will coelute with 44DM-1-c5=.
NOTE 7—233TM pentane will coelute with toluene when the ratio with toluene is greater than 5.0:1.
NOTE 8—The coeluting olefins in Notes 2-6 will usually be below 1000 ppm.
NOTE 9—In some instances the chemical group is known, but the chemical structure is not known (for example, C6-olefin; the position of the double
bond is not known).
NOTE 10—Relative response factors for six of the major oxygenated compounds have been determined by using the average results from seven
laboratories analyzing six samples in duplicate. These same samples were used to determine linearity of methanol, ethanol, t-butanol, MTBE, ETBE and
TAME from a concentration level ranging from 1 mass % up to 30 mass %.
Peak No.
1
2
3
4
5
6
7
8
9
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
New Name
Methane
Ethene
Ethane
Propene
Propane
Isobutane
Methanol
Isobutene
1-butene
1,3-butadiene
N-butane
Trans-2-butene
2,2-dimethylpropane
Cis-2-butene
1,2-butadiene
Ethanol
3-methyl-1-butene
Isopentane
1,4-pentadiene
2-Butyne (dimethylacetylene)
1-pentene
Isopropanol
2-methyl-1-butene
N-pentane
2-methyl-1,3-butadiene
Trans-2-pentene
3,3-dimethyl-1-butene
Cis-2-pentene
Tert-butanol (TBA)
2-methyl-2-butene
Trans-1,3-pentadiene
3-methyl-1,2-butadiene
Cyclopentadiene
Cis-1,3-pentadiene
1,2-pentadiene
2,2-dimethylbutane
Cyclopentene
4-methyl-1-pentene
3-methyl-1-pentene
n-propanol
Cyclopentane
2,3-dimethylbutane
2,3-dimethyl-1-butene
Methyl tert-butyl ether (MTBE)
Cis-4-methyl-2-pentene
2-methylpentane
Trans-4-methyl-2-pentene
Methyl ethyl ketone (MEK)
3-methylpentane
C6-olefin
2-methyl-1-pentene
1-hexene
Methyl sec-butyl ether (MSBE)
C6-olefin
2-butanol
2ethyl-1-butene
N-hexane
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
6.74
7.10
7.21
7.41
7.87
8.26
8.64
8.95
8.99
9.17
9.28
9.70
9.82
10.33
10.88
11.39
12.21
13.57
14.25
14.57
15.03
15.28
15.76
16.24
16.73
17.23
17.86
18.17
18.51
18.76
19.12
19.48
19.76
20.25
20.51
20.69
23.16
24.30
24.38
24.68
24.86
25.57
25.99
26.18
26.48
26.66
72.09
28.00
29.15
29.61
30.29
30.52
30.66
30.94
31.56
32.47
32.75
16.04
28.05
30.07
42.05
44.11
58.12
32.03
56.11
56.11
54.09
58.12
56.11
72.15
56.11
54.09
46.07
70.13
72.15
68.12
54.09
70.13
60.11
70.13
72.15
68.12
70.13
84.16
70.13
74.12
70.13
68.12
68.12
67.10
68.12
68.12
86.18
68.12
84.16
84.16
60.11
70.13
86.18
84.16
88.09
84.16
86.18
84.16
72.06
86.18
84.16
84.16
84.16
88.09
84.16
74.12
84.16
86.18
1.000
0.874
0.937
0.874
0.916
0.906
2.672
0.874
0.874
0.843
0.906
0.874
0.899
0.874
0.843
1.862
0.874
0.899
0.849
0.843
0.874
1.950
0.874
0.899
0.849
0.874
0.874
0.874
1.161
0.874
0.849
0.849
0.824
0.849
0.849
0.895
0.849
0.874
0.874
1.770
0.874
0.895
0.874
1.407
0.874
0.895
0.874
1.570
0.895
0.874
0.874
0.874
1.550
0.874
1.600
0.874
0.895
14
D 6729 – 04e1
TABLE A1.1
Continued
Peak No.
New Name
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
Cis-3-hexene
Di-isopropyl ether (DIPE)
Trans-3-hexene+hexadiene
2-methyl-2-pentene
3-methylcyclopentene
Trans-3-methyl-2-pentene
Cis-2-hexene
3,3-dimethyl-1-pentene
Cis-3-methyl-2-pentene
Ethyl tert-butyl ether (ETBE)
2,3-dimethyl-1,3-butadiene
Methylcyclopentane
2,2-dimethylpentane
4,4-dimethyl-1-pentene
Isobutanol
2,3-dimethyl-2-butene
2,4-dimethylpentane
1,3,5-hexatriene
2,2,3-trimethylbutane
Methylcyclopentadiene
C7-olefin
C7-olefin
C7-diolefin
4-methylcyclopentene
Methylenecyclopentane
Benzene
1-methyl-1-cyclopentene
C7-olefin
C2-methyl-3-hexene
3,3-dimethylpentane+5-methyl-1hexene
Cyclohexane
Trans-2methyl-3-hexene
3,3-dimethyl-1,4-pentadiene
N-butanol
Dimethylcyclopentadiene
t,2-ethyl-3-methyl-1-butene
4-methyl-1-hexene
C7-olefin
3-methyl-1-hexene
4-methyl-2-hexene
2-methylhexane+C7-olefin
2,3-dimethylpentane
Cyclohexene
Tert-amyl methyl ether (TAME)
C7-olefin
C7-olefin
3-methylhexane
C7-olefin
C7-olefin
Trans-1,3-dimethylcyclopentane
Cis-1,3-dimethylcyclopentane
Trans-1,2-dimethylcyclopentane
3-ethylpentane
C7-olefin
2,2,4-trimethylpentane
C7-olefin
1-heptene
C7-olefin
2,3-dimethyl-1,3-pentadiene
C7-diolefin
C7-olefin
C7-diolefin
C7-diolefin
C7-olefin
N-heptane
Cis-3-heptene
2-methyl-2-hexene
Cis-methyl-3-hexene
Trans-3-heptene
3-ethyl-2-pentene
1,5-dimethylcyclopentene
Trans-2-methyl-3-hexene
C7-diolefin+C7-triolefin
33.41
33.58
33.86
34.33
34.57
34.71
35.62
36.04
36.92
37.07
37.19
37.40
37.60
37.91
38.06
38.30
38.99
39.31
39.48
40.17
40.30
40.68
41.20
41.44
42.08
42.30
42.46
43.06
43.37
43.81
84.16
102.00
84.16
84.16
82.10
84.16
84.16
98.19
84.16
102.18
82.10
84.16
100.21
98.19
74.12
84.16
100.21
80.06
100.21
80.06
98.19
98.19
96.18
82.10
82.10
78.05
82.10
98.19
98.19
100.21
0.874
1.600
0.874
0.874
0.853
0.874
0.874
0.874
0.874
1.255
0.853
0.874
0.892
0.874
1.500
0.874
0.892
0.832
0.892
0.832
0.874
0.874
0.856
0.853
0.853
0.812
0.853
0.874
0.874
0.892
44.07
44.82
45.44
45.58
45.69
45.97
46.27
46.55
46.78
46.92
47.29
47.51
47.65
48.10
48.46
48.64
49.05
49.47
49.62
49.83
50.40
51.01
51.21
51.43
51.61
51.75
52.05
52.18
52.69
53.00
53.36
53.81
54.13
54.28
54.59
54.81
55.10
55.35
55.72
55.88
56.06
56.58
57.01
84.16
98.19
96.18
74.12
94.17
98.19
98.19
98.19
98.19
98.19
100.21
100.21
82.10
102.18
98.19
98.19
100.21
98.19
98.19
98.19
98.19
98.19
100.10
98.19
114.23
98.19
98.19
98.19
96.18
96.18
98.19
96.18
96.18
98.19
100.21
98.19
98.19
98.19
98.19
96.18
96.18
98.19
96.18
0.874
0.874
0.856
1.500
0.838
0.874
0.874
0.874
0.874
0.874
0.892
0.892
0.853
1.210
0.874
0.874
0.892
0.874
0.874
0.874
0.874
0.874
0.892
0.874
0.890
0.874
0.874
0.874
0.874
0.856
0.874
0.856
0.856
0.874
0.892
0.874
0.874
0.874
0.874
0.856
0.856
0.874
0.856
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
15
D 6729 – 04e1
TABLE A1.1
Continued
Peak No.
New Name
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282
284
2,3-dimethyl-2-pentene
3-ethylpentene
Methylcyclohexane
C7-olefin
1,1,3-trimethylcyclopentane
2,2-dimethylhexane
2,3,4-trimethyl-1,4-pentadiene
3,3-dimethyl-1,5-hexadiene
C8-olefin
Ethylcyclopentane
3-methylcyclohexene
Methylcyclohexadiene
2,2,3-trimethylpentane
2,5-dimethylhexane+C8-olefin
2,4-dimethylhexane
C7-triolefin+C8-olefin
Trans,cis-1,2,4trimethylcyclopentane
3,3-dimethylhexane+C8-olefin
C7-triolefin+C8-olefin
C8-olefin
Trans,cis-1,2,3trimethylcyclopentane
C8-olefin
C8-olefin
C8-olefin
2,3,4-trimethylpentane
C7-diolefin
Toluene
2,3,3-trimethylpentane
C8-olefin
C8-diolefin
C8-olefin
C8-olefin
C8-olefin
C8-diolefin+C8-olefin
2,3-dimethylhexane
2-methyl-3-ethylpentane
1,1,2-trimethylcyclopentane+C7triolefin
C8-diolefin+C8-paraffin
C8-olefin
C8-olefin
2-methylheptane
4-methylheptane
C8-diolefin+C7-olefin
C8-olefin
Cis-1,3-dimethylcyclohexane
Trans-1,4-dimethylcyclohexane
3-methylheptane
3-ethylhexane
C8-diolefin
C8-olefin
C8-olefin
1,1-dimethylcyclohexane
C8-olefin
C8-olefin
Cis-1-ethyl-3-methylcyclopentane
2,2,5-trimethylhexane
Trans-1-ethyl-3methylcyclopentane
Trans-1-ethyl-2methylcyclopentane
1-methyl-1-ethylcyclopentane
1-octene
C8-olefin
Trans-1,2-dimethylcyclohexane
C8-olefin
C8-olefin
Trans-3-C8-Olefin
C8-olefins
Trans-1,3-dmcyclohexane
Cis-1,4-dmcycloHexane
N-octane
57.35
57.57
57.79
58.28
58.79
59.29
59.45
59.79
60.12
60.60
60.99
61.14
61.22
61.59
61.91
62.28
62.68
98.19
98.19
98.19
98.19
112.22
114.10
110.21
110.21
98.19
98.19
96.18
94.17
114.10
114.23
114.23
96.18
112.22
0.874
0.874
0.874
0.874
0.874
0.890
0.859
0.859
0.874
0.874
0.856
0.838
0.890
0.890
0.890
0.856
0.874
63.13
63.39
63.69
64.27
114.23
96.18
112.22
112.22
0.890
0.856
0.874
0.874
64.52
64.73
64.82
64.94
65.25
65.50
65.76
65.90
66.12
66.48
66.65
67.08
67.30
67.47
67.71
68.04
112.22
112.22
112.22
114.23
96.18
92.06
114.23
112.22
110.21
112.22
112.22
112.22
110.21
114.23
114.23
112.22
0.874
0.874
0.874
0.890
0.856
0.821
0.890
0.874
0.859
0.874
0.874
0.874
0.859
0.890
0.890
0.874
68.31
68.41
68.64
68.86
69.11
69.41
69.70
69.91
70.01
70.23
70.38
70.51
70.72
70.92
71.18
71.43
71.70
72.10
72.23
72.46
110.21
112.22
112.22
114.23
114.23
112.22
112.22
112.22
112.22
114.23
114.23
110.21
112.22
112.22
112.22
112.22
112.22
112.22
128.26
112.22
0.859
0.874
0.874
0.890
0.890
0.874
0.874
0.874
0.874
0.890
0.890
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.888
0.874
72.68
112.22
0.874
72.96
73.16
73.26
73.36
73.48
73.68
74.08
74.45
74.66
74.79
74.98
112.22
112.22
112.22
112.22
112.22
112.22
112.11
112.22
112.22
112.22
114.23
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.890
286
288
290
292
294
296
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
16
D 6729 – 04e1
TABLE A1.1
Continued
Peak No.
New Name
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446
448
450
452
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
C8-olefin
C8-olefin
Trans-2-octene
Isopropylcyclopentane
C9-olefin
C9-olefin
C9-olefin
C9-olefin
2,2,4-trimethylhexane
2,4,4-trimethylhexane
C9-olefins
2,3,5-trimethylhexane
Cis-2-octene
2,2,3,4-tetramethylpentane
2,2-dimethylheptane
Cis-1,2-dimethylcyclohexane
2,4-dimethylheptane
C9-olefin
C9-olefin
Ethylcyclohexane
Propylcyclopentane
2-methyl-4-ethylhexane
2,6-dimethylheptane
C9-olefin
1,1,4-trimethylcyclohexane
C9-olefin
C9-olefin
1,1,3-trimethylcyclohexane
2,5 & 3,5-dimethylheptane
C9-olefin
3,3-DMheptane
C9-paraffin
C9-olefin
2,3,3-trimethylhexane
C9-olefin
Ethylbenzene
C9-olefin
Trans-1,2,4-trimethylcyclohexane
C9-olefin
2,3,4-trimethylhexane
C9-olefin
3,3,4-trimethylhexane
M-Xylene
P-Xylene
2,3-dimethyheptane
3,5-dimethylheptane
3,4-dimethylheptane
C9-olefin
3-methyl-3-ethylhexane
C9-olefin
4-ethylheptane
4-methyloctane+C9-olefin
2-methyloctane
C9-olefin
C9-paraffin
C9-olefin
3-ethylheptane
3-methyloctane
C9-paraffin
Cis-1,2,4-trimethylcyclohexane
1,1,2-trimethylcyclohexane
O-Xylene
C9-olefin
C9-paraffin
C9-paraffin
C9-olefin
Trans-1-ethyl-4methylcyclohexane
Cis-1-ethyl-4-methylcyclohexane
C9-paraffin
1-nonene
Isobutylcyclopentane
C9-paraffin
Trans-3-nonene
75.33
75.49
75.62
75.72
75.85
75.89
75.90
76.08
76.31
76.62
76.86
77.29
77.53
77.77
78.02
78.36
78.74
78.90
79.08
79.24
79.39
79.59
79.74
79.85
80.05
80.28
80.38
80.52
80.69
80.88
81.00
81.13
81.34
81.56
81.68
81.96
82.00
82.31
82.33
82.63
82.73
82.89
83.30
83.43
83.57
83.83
83.91
84.08
84.26
84.41
84.52
84.70
84.84
85.01
85.18
85.36
85.51
85.69
85.87
85.91
86.05
86.27
86.47
86.57
86.75
86.90
87.08
112.22
112.22
112.22
112.22
126.24
126.24
126.24
126.24
128.26
128.26
126.24
128.26
112.22
128.26
128.26
112.22
128.26
126.24
126.24
112.22
112.22
128.26
128.26
126.24
126.24
126.24
126.24
126.24
128.26
126.24
128.26
128.26
126.24
128.26
126.24
106.08
126.24
126.24
126.24
128.26
126.24
128.26
106.08
106.08
128.26
128.26
128.26
126.24
128.26
126.24
128.26
128.26
128.26
126.24
128.26
126.24
128.26
128.26
126.24
126.24
126.24
106.08
126.24
128.26
128.26
126.24
126.24
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.888
0.888
0.874
0.888
0.874
0.888
0.888
0.874
0.888
0.874
0.874
0.874
0.874
0.888
0.874
0.874
0.874
0.874
0.874
0.874
0.888
0.874
0.888
0.888
0.874
0.888
0.874
0.827
0.874
0.874
0.874
0.888
0.874
0.888
0.827
0.827
0.888
0.888
0.888
0.874
0.888
0.874
0.888
0.888
0.888
0.874
0.888
0.874
0.888
0.888
0.874
0.874
0.874
0.827
0.874
0.888
0.888
0.874
0.874
87.23
87.49
87.79
88.00
88.45
88.65
126.24
128.26
126.24
126.24
128.26
126.24
0.874
0.888
0.874
0.874
0.888
0.874
524
526
528
530
532
534
17
D 6729 – 04e1
TABLE A1.1
Continued
Peak No.
New Name
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
536
538
540
542
544
546
548
550
552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
582
584
586
588
590
592
594
596
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648
650
652
654
656
Cis-3-nonene
C9-paraffin
n-nonane
C10-olefin
Trans-2-nonene
1-methyl-1-ethylcyclohexane
1-methyl-2-propylcyclopentane
C10-olefin
C10-paraffin
C10-paraffin
Isopropylbenzene
Cis-2-nonene
Tert-butylcyclopentane
C9-olefins
Nonene
Isopropylcyclohexane
3,3,5-trimethylheptane
2,2-dimethyloctane
2,4-dimethyloctane
1-methyl-4-isopropylcyclohexane
Sec-butylcyclopentane
Propylcyclohexane
2,5-dimethyloctane
Butylcyclopentane
2,6-dimethyloctane
3,6-dimethyloctane
1-methyl-2-ethylcyclohexane
C10-olefin
Propylbenzene
3,3-dimethyloctane
3-methyl-5-ethylheptane
C10-olefin
1-ethyl-3-methylbenzene
1-ethyl-4-methylbenzene
Naphthene
1,3,5-trimethylbenzene
2,3-dimethyloctane
5-methylnonane
4-methylnonane
2-methylnonane
1-ethyl-2-methylbenzene
3-ethyloctane
Naphthene
3-methylnonane
C10-olefin
C10-paraffin
C10-paraffin
1,2,4-trimethylbenzene
C10-paraffin
C10-paraffin
Isobutylcyclohexane
C10-paraffin
C10-paraffin
1-decene
C10-paraffin
C10-paraffin
C10-aromatic
C10-paraffin
Naphthene
Isobutylbenzene
Trans-1-methyl-2propylcyclohexane
C10-paraffin
Sec-butylbenzene
n-decane
C11-paraffin
C11-paraffin
1,2,3-trimethylbenzene
1-methyl-3-isopropylbenzene
C11-paraffin
1-methyl-4-isopropylbenzene
C11-paraffin
C11-paraffin
2,3-dihydroindene
88.82
89.09
89.24
89.41
89.74
89.61
89.96
90.09
90.18
90.29
90.46
90.78
90.80
90.88
91.16
91.32
91.44
91.60
91.67
91.82
92.20
92.40
92.59
92.89
93.04
93.43
93.59
93.79
93.96
94.27
94.54
94.66
94.88
95.09
95.30
95.73
95.94
96.13
96.29
96.49
96.77
97.01
97.14
97.47
97.69
97.83
98.16
98.49
98.74
98.90
99.10
99.09
99.22
99.52
99.66
99.70
99.75
99.82
99.93
100.06
100.09
126.24
128.26
128.26
140.27
126.24
126.24
126.24
140.27
142.28
142.28
118.08
126.24
126.24
126.24
126.24
126.24
142.28
142.28
142.28
140.27
126.24
126.24
142.28
126.24
142.28
142.28
126.24
140.27
120.20
142.28
142.28
140.27
120.20
120.20
140.27
120.20
142.28
142.28
142.28
142.28
120.20
142.28
140.27
142.28
140.27
142.28
142.28
120.20
142.28
142.28
140.27
142.28
142.37
140.27
142.28
142.28
134.22
142.28
140.27
134.22
140.27
0.874
0.888
0.888
0.874
0.874
0.874
0.874
0.874
0.887
0.887
0.832
0.874
0.874
0.874
0.874
0.874
0.887
0.887
0.887
0.874
0.874
0.874
0.887
0.874
0.887
0.887
0.874
0.874
0.832
0.887
0.887
0.874
0.832
0.832
0.874
0.832
0.887
0.887
0.887
0.887
0.832
0.887
0.874
0.887
0.874
0.887
0.887
0.832
0.997
0.887
0.874
0.887
0.887
0.874
0.887
0.887
0.837
0.887
0.874
0.837
0.874
100.19
100.28
100.40
100.67
100.85
101.28
101.40
101.55
101.73
102.06
102.05
102.42
142.28
134.22
142.28
156.32
156.32
120.20
134.22
156.32
134.22
156.32
156.32
118.17
0.887
0.837
0.887
0.886
0.886
0.832
0.837
0.886
0.837
0.886
0.886
0.819
658
660
662
664
666
668
670
672
674
676
678
680
18
D 6729 – 04e1
TABLE A1.1
Continued
Peak No.
New Name
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
682
684
686
688
690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
730
732
734
736
738
740
742
744
746
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
Sec-butylcyclohexane
C11-paraffin
1-methyl-2-isopropylbenzene
3-ethylnonane
C11-paraffin
Naphthene
C11-paraffin
1,3-diethylbenzene
1-methyl-3-propylbenzene
1,4-diethylbenzene
1-methyl-4-propylbenzene
Butylbenzene
3,5-dimethyl-1-ethylbenzene
1,2-diethylbenzene
C11-paraffin
C10-aromatic
C10-aromatic
C10-aromatic
1-methy-2-propylbenzenes
C10-aromatic
5-methyldecane
4-methyldecane
2-methyldecane
C11-paraffin
1,4-dimethyl-2-ethylbenzene
1,3-dimethyl-4-ethylbenzene
C11-paraffin
3-methyldecane
C1- indane
1,2-dimethyl-4-ethylbenzene
C11-paraffin
1,3-dimethyl-2-ethylbenzene
C11-paraffin
C11-paraffin
1-methyl-4-tert-butylbenzene
1,2-dimethyl-3-ethylbenzene
1-ethyl-2-isopropylbenzene
N-undecane
1-ethyl-4-isopropylbenzene
C12-paraffin
1,2,4,5-tetramethylbenzene
2-methylbutylbenzene
1,2,3,5-tetramethylbenzene
3 methylbutylbenzene
C11-aromatic
C12-paraffin
C11-aromatic
C11-aromatic
C11-aromatic
1-tert-butyl-2-methylbenzene
C11-aromatic
1-ethyl-2-propylbenzene
C11-aromatic
C11-aromatic
C11-aromatic
1-methyl-3-butylbenzene
C11-aromatic
1,2,3,4-tetramethylbenzene
Pentylbenzene
Trans-1-methyl-2(4methylpentyl)-cyclopentane
C11-aromatic
C11-aromatic
C11-aromatic
C12-paraffin
1,2,3,4-tetrahydronaphthalene
1-tert-butyl-3,5-dimethylbenzene
Naphthalene
1,1-dimethylindane
1,2-dimethylindane
1,6-dimethylindane
C11-aromatic
1- ethylindane
2- ethylindane
102.57
102.87
103.03
103.26
103.37
103.55
103.88
104.08
104.35
104.57
104.73
104.85
105.00
105.26
105.39
105.49
105.64
105.75
105.85
105.95
106.11
106.26
106.39
106.55
106.76
106.93
107.06
107.27
107.35
107.46
107.76
108.01
108.58
108.75
108.98
109.17
109.50
109.62
109.80
109.96
110.15
110.55
110.43
110.64
110.74
110.84
110.94
111.05
111.12
111.56
111.65
111.76
112.00
112.22
112.34
112.52
112.63
112.79
113.17
113.44
140.27
156.32
134.22
156.32
156.32
140.27
126.19
134.22
134.22
134.22
134.22
134.22
134.22
134.22
156.32
134.22
134.22
134.22
134.22
134.22
156.32
156.32
156.32
156.32
134.22
134.22
156.32
156.32
132.00
134.22
156.32
134.22
156.32
156.32
148.25
134.22
148.25
156.32
148.25
170.34
134.22
148.25
134.22
148.25
148.25
170.34
148.25
148.25
148.25
148.25
148.25
148.25
148.25
148.25
148.25
148.25
148.25
148.25
148.25
168.33
0.874
0.886
0.837
0.886
0.886
0.874
0.886
0.837
0.837
0.837
0.837
0.837
0.837
0.837
0.886
0.837
0.837
0.837
0.837
0.837
0.886
0.886
0.886
0.886
0.837
0.837
0.886
0.886
0.837
0.837
0.886
0.837
0.886
0.886
0.840
0.837
0.840
0.886
0.840
0.885
0.837
0.840
0.837
0.840
0.840
0.885
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.874
113.74
113.85
114.02
114.12
114.17
114.32
114.65
114.94
115.19
115.33
115.55
115.65
115.88
148.25
148.25
148.25
170.34
132.09
162.30
128.06
146.10
146.10
146.10
148.25
146.10
146.10
0.840
0.840
0.840
0.885
0.824
0.843
0.799
0.829
0.829
0.829
0.885
0.829
0.829
802
804
806
808
810
812
814
816
818
820
822
824
826
19
D 6729 – 04e1
TABLE A1.1
Peak No.
828
830
832
834
836
838
840
842
844
846
848
850
852
854
856
858
860
862
864
866
868
870
872
874
876
878
880
882
884
886
888
890
892
895
900
905
910
915
920
925
930
940
950
New Name
Continued
Retention Time
Molecular Mass, MWt
Theoretical Mass, Rf, (C1)
116.00
116.21
116.55
116.69
117.07
117.19
117.55
117.99
118.13
118.59
119.07
119.60
119.65
119.70
119.77
119.87
119.93
119.98
120.20
120.30
120.80
121.42
121.65
121.85
122.06
122.28
122.40
122.80
123.20
124.00
125.60
126.34
126.60
126.84
126.97
127.10
127.52
127.69
128.44
128.31
129.05
129.92
131.10
148.25
162.34
170.34
148.25
148.25
148.25
162.30
146.10
146.10
162.30
146.10
162.30
146.10
146.10
162.30
162.30
162.30
162.30
162.30
146.10
163.30
142.08
162.30
162.30
184.22
142.08
162.30
160.20
162.30
162.30
184.22
140.20
198.34
156.30
156.30
198.34
156.30
156.30
156.30
156.30
156.30
156.30
212.34
0.884
0.843
0.885
0.840
0.840
0.840
0.843
0.829
0.829
0.843
0.829
0.843
0.829
0.829
0.843
0.843
0.843
0.843
0.843
0.829
0.843
0.806
0.843
0.843
0.884
0.806
0.843
0.843
0.843
0.843
0.883
0.874
0.883
0.812
0.812
0.883
0.812
0.812
0.812
0.812
0.801
0.812
0.883
Ethyl -1,3,5-trimethylbenzene
1,3-dipropylbenzene
n-dodecane
Ethyl -1,2,4-trimethylbenzene
C11-aromatic
C11-aromatic
C12-aromatic+C2-indane
2,4-dimethylindane
4-ethylindane
1-tert-butyl-4-ethylbenzene
1,3-dimethylindane
1-methyl-4-pentylbenzene
4,7-dimethylindane
5,6-dimethylindane
C12-aromatic
Hexylbenzene
C6-benzene
C6-benzene
C6-benzene
4,5-dimethylindane
C6-benzene
2-methylnaphthalene
C6-benzene
C6-benzene
n-tridecane
1-methylnaphthalene
C6-benzene
C2-tetralin
C6-benzene
C6-benzene
C13-paraffin
Trans-7-decene
n-tetradecane
2,6-dimethylnaphthalene
2,7-dimethylnaphthalene
n-tetradecane
1,3-dimethylnaphthalene
1,6-dimethylnaphthalene
1,5-dimethylnaphthalene
1,4-dimethylnaphthalene
Acenaphthalene
1,2-dimethylnaphthalene
n-pentadecane
TABLE A1.2 Repeatability and Reproducibility of IHA Determinations
NOTE 1—Brief explanation of header information:
rmin—lower 95 % confidence limit of rest,
rest—repeatability estimate in percent of concentration,
rmax—upper 95 % confidence limit of rest,
Rmin, Rest, Rmax—same as above except for reproducibility,
Cmin—lower concentration limit that rest, Rest is applicable, and
Cmax—upper concentration limit that rest, Rest is applicable.
NOTE 2—Short analyte names were used for the above table and by using the number beside this name, it will correspond to a full name in Annex
A1.
NOTE 3—C2benzene refer to grouping ethylbenzene, M, P, and O-xylene as a group.
NOTE 4—The numbers in the second column were used for the statistical analysis for the round robin for 1996. The numbers beside the names are the
new numbers being used in the new presentation of the IHA Method.
GC/MS
No. for RR
IHA No.
A
6
9
11
12
14
20
22
26
28
6
9
12
14
18
24
26
32
36
A
A
A
A
A
A
A
A
IHA/
abbreviated
Name
iC4
1C4=
nC4
t2C4=
c2C4=
3M1C4=
iC5
1C5=
2M1C4=
rmin
rest
rmax
Rmin
Rest
Rmax
Cmin
Cmax
9.8
10.4
10
12.1
14.2
7.3
4.6
5.9
4.4
1.4
16.7
12
15.7
15.4
9.6
5.4
7.5
6.3
17.7
25.1
14.2
19.8
16.7
12.3
6.3
9.4
8.6
24.9
28
27.1
28.2
25.2
17.2
13.4
17
14.5
30.7
36
31.7
36.8
31.1
19.9
15.5
20.6
17.5
37.3
45.4
36.6
47.1
37.9
22.7
17.9
24.7
20.9
0.04
0.01
0.92
0.03
0.03
0.02
2.39
0.06
0.14
2.86
0.14
8.51
0.31
0.29
0.11
12.09
0.4
0.8
20
D 6729 – 04e1
TABLE A1.2
GC/MS
No. for RR
IHA No.
A
30
34
38
40
42
52
54
56
58
62
64
66
70
74
76
80
84
86
96
98
102
103
104
105
106
109
112
116
118
124
128
38
42
46
50
52
62
64
66
68
72
74
76
80
82
84
88
92
94
104
106
110
112
114
116
118
122
128
138
142
150
154
130
131
133
134
136
138
146
148
154
156
160
166
172
174
176
180
184
186
188
189
194
196
197
198
200
202
204
206
208
210
212
214
218
222
224
226
234
240
245
250
156
158
162
164
166
168
176
178
184
186
190
198
204
206
208
210
212
214
218
220
226
228
230
232
234
236
238
240
242
244
246
248
252
256
260
262
270
276
278
280
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
IHA/
abbreviated
Name
Continued
rmin
rest
rmax
Rmin
Rest
Rmax
Cmin
Cmax
nC5
4.2
t2C5=
4.1
c2C5=
5.2
2M2C4=
3.9
t13C5=,=
4.5
222DMC4
2.9
cyC5=
4.6
4M1C5=
11.2
3M1C5=
8.3
cyC5
2.5
23DMC4
1.7
MTBE
1.9
c4M2C5=
5.1
2MC5
2.2
t4M2C5=
4.9
3MC5
2
2M1C5=
3.6
1C6=
3.9
nC6
2.5
c3C6=
4.4
t3C6=+C6=,=
2.9
2M2C5=
2.7
3McyC5=
7.8
t3M2C5=
4.3
c2C6=
4.1
c3M2C5=
3.1
McyC5
2.4
24DMC5
1.8
223TMC4
0.5
C7=,=
0
methyl5.5
enecyC5
Benzene
2.6
1McyC5=
4.3
c2M3C6=
0
33DMC5+5M1C6= 2.3
cyC6
3.3
t2M3C6=
4.2
t2e3m1C4=
3.2
4M1C6=
0.1
4M2C6=
3
2MC6+C7=
1.4
cyC6=
3.9
3MC6
1.3
t13DMcyC5
1.7
c13DMcyC5
1.9
t12DMcyC5
2.2
3EC5
2.8
5M-1-C6=
1.8
224TMC5
2.3
1C7=
4.3
C7=
5.2
C7=
3.3
C7=,=
3.7
C7=,=
5.6
C7=
3.8
nC7
1.5
c3C7=
2.1
2M2C6=
2.1
c3M3C6=
3.3
t3C7=
1.8
3E2C5=
0.1
1,5DMcyC5=
3
t2M3C6=
2.8
23DM2C5=
3.1
McyC6
1.9
113TMCyC5
1.7
22DMC6
4.7
EcyC5
2.5
223TMC5
2.2
25DMC6+C8=
1.5
24DMC6
1.8
6.2
6.3
7.7
6.2
10.2
3.7
9
14.8
12.1
4.7
2.7
3.2
7.1
2.9
6.3
2.7
5.1
6.4
4.6
6.5
5.2
4.7
11.3
6.9
6.7
4.5
3.3
2.7
4.1
3.1
9.1
8.7
9.1
11
9.2
19.6
4.7
15.5
19
17
7.7
3.9
5
9.7
3.8
7.9
3.5
7
9.9
7.7
9.1
8.4
7.4
15.9
10.2
10.2
6.4
4.4
3.9
14.3
16.6
14.1
13.9
13
14.4
15.2
22.1
9.8
15.6
22.6
37.1
11.8
8.6
9.1
27.4
9.3
16.9
7.7
9.6
15.1
11
12.5
9.4
9.9
22.7
10.1
14.3
9.1
9.1
8
20.9
11.3
14.9
16.1
17.3
18.3
18.1
31.1
12.9
20.3
31.8
50.5
13.4
9.8
12.3
43.7
11
20.2
9.1
12.5
19.9
13.3
16.3
12.4
12
25.2
12.5
17.4
10.5
10.1
10.1
35.2
19.1
20.3
18.5
22.6
22.9
21.4
42.2
16.6
25.9
43.2
66.8
15.1
11.1
16.2
65.4
12.9
23.9
10.7
16.1
25.7
15.8
20.9
15.9
14.4
28
15.4
21
12.1
11.1
12.4
54.8
29.9
26.8
1
0.27
0.15
0.44
0.01
0.07
0.07
0.02
0.04
0.07
0.53
0.12
0.02
1.03
0.05
0.58
0.09
0.04
0.25
0.08
0.17
0.15
0.02
0.1
0.07
0.14
0.36
0.2
0.01
0.01
0.01
5.18
1.08
0.59
1.78
0.05
2.16
0.25
0.1
0.12
0.69
1.91
15.73
0.09
5.62
0.26
3.25
0.45
0.26
3.23
0.48
0.93
0.77
0.11
0.48
0.4
0.75
2.34
1.93
0.06
0.04
0.03
4.7
6.3
1.2
3.9
4.4
8.4
5.7
2.4
4.5
2.1
7.2
2
2.4
2.7
3.2
4.8
5
3.4
6.8
7.8
4.8
5
7.3
4.7
2.2
3
3
4.5
2.7
1.2
5
3.6
4
2.6
5.1
9.2
3.6
4.9
2.8
2.9
7.8
8.9
6.8
6.2
5.7
14.7
9.1
11.5
6.4
3
12.1
2.8
3.3
3.6
4.3
7.6
10.6
4.9
10.1
11.1
6.8
6.5
9.3
5.7
3.2
4.2
4.3
6.1
4
5.4
7.8
4.7
5
3.6
11.5
15.9
5
9.3
4.7
4.5
11.5
18.5
17
8.5
11.3
84.2
20.8
16.8
15.9
6.2
30.1
8.5
10.5
9.8
7.6
10
24.1
7.6
15.8
15.1
16.6
12.5
19.5
42.9
7.4
14.2
14.4
21
12.9
13.4
10.3
13.8
9.1
8.5
10.8
12.9
9.6
14.1
6.3
6.1
13.8
24.1
29.1
14.8
12.8
103.2
29.6
29.3
18.7
7.7
45.4
9.9
11.3
10.7
9.1
13.4
35.2
13.2
20.9
18.3
20.7
17.2
23
60.4
8.9
18.2
16.5
24.9
15.2
16.6
16.2
17.9
13
9.9
14.4
23.2
13.5
27.3
8.1
8.1
16.5
30.7
45.9
23.6
14.5
124.8
40.8
46.6
21.8
9.5
65.2
11.5
12.2
11.6
10.8
17.6
49.1
21.1
26.9
22
25.2
22.8
26.9
82.1
10.7
23
18.7
29.3
17.8
20.4
24
22.9
17.8
11.5
18.7
38.1
18.4
46.7
10.3
10.4
0.15
0.17
0.01
0.02
0.04
0.02
0.02
0.01
0.03
1.09
0.02
0.36
0.12
0.09
0.05
0.02
0.03
0.09
0.02
0.02
0.02
0.04
0.04
0.05
0.13
0.04
0.05
0.03
0.04
0.02
0.03
0.04
0.04
0.16
0.01
0.01
0.04
0.02
0.17
0.25
1.86
0.92
0.06
0.22
0.87
0.32
0.19
0.05
0.29
3.54
0.13
2.38
0.6
0.49
0.46
0.21
0.19
23.25
0.13
0.13
0.16
0.31
0.26
0.45
1.55
0.36
0.43
0.29
0.35
0.13
0.27
0.33
0.56
1.44
0.09
0.07
0.3
0.54
1.58
2.19
21
D 6729 – 04e1
TABLE A1.2
GC/MS
No. for RR
IHA No.
A
260
265
278
290
292
294
300
312
314
316
318
326
328
334
336
338
352
356
360
362
366
368
372
374
380
385
400
406
408
416
422
432
434
436
438
440
444
446
450
458
460
462
475
480
500
502
503
504
506
510
518
520
522
528
530
550
564
568
570
572
582
586
590
600
606
608
616
626
636
638
644
646
284
286
292
298
300
302
304
316
320
322
324
332
334
340
344
346
360
364
366
368
372
374
378
380
382
384
388
394
396
404
410
420
422
424
426
428
432
434
438
446
448
450
460
464
474
476
478
480
482
486
492
494
496
502
504
512
518
522
524
526
532
534
536
540
546
548
556
566
576
578
584
586
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
IHA/
abbreviated
Name
Continued
rmin
rest
rmax
Rmin
Rest
Rmax
Cmin
Cmax
tc124TMcyC5
2.4
3,3DMC6+C8=
1.3
tc123TMcyC5
6.1
C8=’S
0.3
234TMC5
1.9
C7=,=
2.9
Toluene
1.7
C8=
3.9
23DMC6
2.2
2M3EC5
2.3
112TMcyC5+C7=,=,=
0.4
2MC7
3.3
4MC7
3.5
c13DMcyC6
3.7
3MC7
2.3
3EC6
4.1
c1E3McyC5
3.1
t1E3McyC5
3.8
t1E2McyC5
4.5
1M1EcyC5
0.2
C8=
7.2
t12DMcyC6
2.2
C8=’S
3.4
t-3-C8=
0
C8=
3.6
t13DMcyC6
3.1
nC8
3
t2C8=
3
iPrcyC5
5.8
C9=
0.3
C9=’S
4.8
c12DMcyC6
3.4
24DMC7
5.6
C9=
1.9
C9=
4.1
EcyC6
2.7
2M4EC6
7.7
26DMC7
5.9
114TMcyC6
5.9
25&35DMc7
3.7
C9=’S
3.3
33DMC7
0.1
EBenzene
2.8
t124TMcyC6
6.9
M-Xylene
2.7
P-Xylene
3.1
23DMC7
5.1
35DMC7
7.2
34DMC7
6.5
3M3EC6
6.3
4MC8+C9=
4.1
2MC8
4.4
C9=
6.8
3EC7
4.5
3MC8
5
O-Xylene
2.1
C9P
3.1
t1E4McyC6
6.5
c1E4McyC6
4.7
C9P
4.5
C9P
7.5
t3C9=
4.6
c3C9=
7.1
nC9
5.8
1M1EcyC6
0.4
1M2PrcyC5
0.2
iPrbenz
4.3
iPrcyC6
4.4
sBucyC5
0.5
PrcyC6
4
26DMC8
4.6
36DMC8
4.5
3.7
5.4
11.5
3.2
3.2
4.2
3.1
6
3.5
4.5
3.3
4.4
5.6
4.8
3.3
6.4
4.3
5.1
7.7
3.1
9.9
4.8
5.3
1.5
5.4
5.4
3.7
6.5
7.4
2.9
8
4.9
9.9
6
6.6
5
11.1
7.3
8.2
5.9
8.4
3.3
3.9
10.9
3.7
4.4
7.6
9.8
10.1
10
5.9
5.9
10.6
6.8
8
3
6.6
9.7
7.4
7.2
11.1
9.1
11.1
7.2
3.1
3
6.9
7.7
4.5
7.3
8.6
7.7
5.4
14.1
19.5
11.8
5
5.8
5.3
8.7
5.2
7.9
11.8
5.9
8.3
6.2
4.5
9.4
5.7
6.7
12.3
12.5
13.3
9
7.9
9.4
7.9
8.4
4.5
12.2
9.3
9.9
12.4
6.8
15.9
13.7
10
8.2
15.3
8.9
11
8.7
17.1
15.7
5.4
16.3
5
5.9
10.9
13
15
15
8.1
7.7
15.7
9.8
12
4.1
12
13.8
10.8
10.7
15.6
16
16.4
8.7
10.7
12.2
10.4
12.4
16.1
12
14.4
12.3
10.8
8.7
40.9
15.5
8.7
19.2
8.7
26
16.1
21.3
26.6
8.4
12.5
18.7
17.8
34.8
8.6
24.4
32.3
24.1
27.1
63.9
109.3
50.8
21.1
34.1
8.8
45.6
31.7
46.9
30.5
22.1
54.5
34.7
19
14.1
20.2
21.9
28
10.5
40.1
25
7.2
84.7
7.5
8.8
45.3
44.1
42.5
38
12.4
12.4
22.3
24.7
12.4
7.7
31.1
26.3
22.1
28.7
16.9
27.3
23.5
18.3
46.2
19.2
11.2
21.8
22.9
77.9
41.2
31.6
15.1
14.8
70
20.3
12
41.1
16.6
35.7
30.6
40
33.7
11.2
24.4
32.6
21.9
53
23.2
35.5
54.1
33.3
37
97.3
124.4
67.2
38.9
48.5
11.9
72.5
50.8
63.8
43.2
39.3
105.5
47.5
27.7
22
27.4
27.7
42.1
14.9
56.4
44
8.9
109.3
9.2
11.6
73.5
82.8
67.7
61
14.3
15.9
33.3
34.4
17.9
9.8
50.4
46.1
35.8
55.7
23.1
38.8
36.1
30
75.8
30.1
18.9
40.2
36.7
96.8
68.2
40.4
20.5
23.2
110.3
26.1
16
75.2
28.2
47.6
51.9
67.2
42
14.5
42.4
52.1
26.5
76.7
48.7
49.7
84.1
44.7
49
140.6
141
86.9
64.7
66.5
15.6
108.4
76.5
84.4
58.9
63.8
181.2
63.1
38.7
32.5
36
34.4
60.3
20.5
76.6
70.9
10.9
138.2
11
14.8
111.5
139.2
101.4
92
16.3
20.1
47.4
46.3
24.9
12.3
76.3
74.1
54.2
95.9
30.8
53.2
52.7
45.8
116
44.5
29.6
66.9
55.1
118.6
105
50.8
0.03
0.01
0.03
0.02
0.09
0.06
2.52
0.02
0.18
0.03
0.02
0.14
0.15
0.04
0.15
0.04
0.09
0.03
0.02
0.01
0.01
0.02
0.02
0.02
0.03
0.04
0.1
0.02
0.03
0.02
0.02
0.04
0.02
0.01
0.02
0.03
0.01
0.03
0.03
0.07
0.01
0.01
0.66
0.02
1.67
0.63
0.03
0.02
0.02
0.02
0.05
0.07
0.01
0.02
0.08
0.92
0.01
0.02
0.02
0.03
0.02
0.01
0.01
0.1
0.02
0.01
0.04
0.01
0.01
0.02
0.03
0.03
0.16
0.07
0.09
0.23
9.14
0.51
13.14
0.2
2.06
0.31
0.23
0.93
0.5
0.25
1.04
0.21
2.32
0.21
0.11
0.08
0.08
0.15
0.26
0.12
0.33
0.31
0.89
0.28
0.36
0.14
0.17
0.39
0.09
0.07
0.11
0.28
0.03
0.14
0.21
0.25
0.07
0.05
3.12
0.15
7.93
3.26
0.16
0.07
0.07
0.14
0.3
0.38
0.1
0.11
0.45
4.18
0.37
0.13
0.15
0.6
0.24
0.16
0.17
0.51
0.11
0.1
0.41
0.35
0.06
0.12
0.23
0.11
22
D 6729 – 04e1
TABLE A1.2
GC/MS
No. for RR
IHA No.
A
651
655
656
658
660
661
662
663
668
671
673
674
675
684
688
700
705
708
709
712
714
718
723
724
725
727
728
729
730
740
746
748
750
756
758
762
764
592
600
602
606
610
612
614
616
622
626
630
632
634
648
652
662
668
674
676
680
682
686
694
696
698
702
704
706
708
718
722
724
726
730
732
736
740
768
780
785
800
806
744
750
752
756
762
A
810
766
A
824
826
828
830
832
834
836
782
784
786
788
790
792
796
840
844
846
854
858
862
870
800
804
806
812
814
817
820
875
884
822
824
888
895
915
826
832
842
925
846
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
IHA/
abbreviated
Name
Continued
rmin
rest
rmax
Rmin
Rest
Rmax
Cmin
Cmax
nPrbenz
3.5
1E3Mbenz
2.8
1E4Mbenz
3.1
135TMbenz
3.4
5MC9
10.9
4MC9
7.1
2MC9
4.4
1E2Mbenz
3.6
3MC9
7.2
C10-P
0.5
124TMbenz
2.8
C10-P
7.1
C10P
2.6
C10A
5.2
naphthene
4.8
nC10
7.3
123TMbenz
4
1M4iPrbenz
3
C11P
5.1
indan
4
sBucyC6
8.7
1M2iPrbenz
4.6
C11P
5
13DEbenz
4.6
1M3Prbenz
3.5
1M4Prbenz
4.8
Bubenz
7.2
35DM1EBenz
3.5
12DEbenz
6.4
1M2PrBenz
6.8
5MC10
7.1
4MC10
4.2
2MC10
6.5
14DM2Ebenz
4.1
13DM4Ebenz
4.5
3MC10
10.9
12DM4Ebenz+
3.1
C1indane
13DM2Ebenz
6.2
1M4tBubenz
6.1
12DM3Ebenz
4.1
nC11
8.7
1245tertM5.4
benz
1235tertM4.7
benz
C11A
8.7
1E2Prbenz?
5
C11A
8.5
C11A
8.8
C11A
9.7
1M3Bubenz
5.6
1234tetraM6.8
benz
+C11A
t1M2(4MC5)cyC5 10.2
C11A
9.1
C11A
9.6
1tBu35DMbenz
11.2
naphthalene
4.9
C11A
9.7
16DMIND9
ANE
C11A
15.6
2ETHYL IN5.8
DANE
2ETHYL135TMBZ 7.9
nC12
13.4
24DMIND10.3
ANE
1tBu4Ebenz
7.7
5.8
4.5
4.5
5.8
12.9
10.2
7.1
5.5
12.9
5.4
4.7
12.9
6.2
9.3
7.5
8.9
6.3
6.6
8.9
6.6
12.7
8.4
7.8
6.1
5.2
7.8
11
6.4
9.7
10.7
11.5
6.9
9.5
6.1
6.2
15.7
5.3
9
6.9
6.3
9.1
15.1
14
10.9
8.1
21
19.5
7.4
21.4
12.3
15.1
11
10.7
9.2
12.1
14.1
10.1
17.6
13.7
11.4
8
7.3
11.7
16.1
10.5
14
15.8
17.5
10.4
13.3
8.7
8.3
21.7
8.5
11.6
6.5
7.8
8.5
76.7
29.7
14.9
10.3
41.8
30.3
9.3
35.6
25.2
22.8
40.2
14.3
18.2
22
34.9
15.7
46.7
48
29.6
11.1
8.5
16.7
15.8
9.1
38.6
27.3
30.8
15.3
52.7
17.4
18.5
35.8
8.2
17.3
8.3
9.7
12.5
104.7
44.5
24.2
15.9
59
52.1
12.5
81.2
55.1
38.2
63.2
29.5
23.2
34.2
68.2
23.6
70.2
88.1
60.7
19.5
13
22.8
21.8
14
57.4
41.7
44.5
32.1
68.9
26.3
22.9
54.5
12.5
24.6
10.3
11.9
17.7
138.8
63.5
36.6
23.2
80.3
82.6
16.4
155.1
102.4
59.4
93.7
52.8
29.1
50.1
118.1
33.8
100.5
146
108.3
31.5
18.8
30.2
29.3
20.3
81.4
60.4
61.8
57.9
88.2
37.9
27.8
78.8
18.2
0.21
0.85
0.36
0.46
0.02
0.02
0.1
0.3
0.04
0.01
1.29
0.01
0.01
0.01
0.03
0.07
0.28
0.01
0.02
0.15
0.01
0.02
0.02
0.07
0.18
0.1
0.04
0.18
0.02
0.06
0.02
0.01
0.02
0.12
0.12
0.02
0.27
0.83
2.8
1.26
1.53
0.13
0.13
2.07
1.1
0.19
0.47
4.65
0.32
0.34
0.3
0.27
0.29
1.15
0.08
0.12
0.4
0.06
0.33
0.19
0.22
0.71
0.35
0.14
0.56
0.09
0.21
0.08
0.68
0.15
0.42
0.54
0.17
0.75
9.6
10.3
7.3
11.1
6.8
14
16.1
11.7
13.9
8.6
37.9
45.8
28.2
31.2
12.3
68.9
83.5
45.3
40.2
16.8
113.3
137.7
68.2
50.6
22.2
0.03
0.03
0.09
0.04
0.12
0.35
0.11
0.2
0.21
0.39
7.7
11.6
12.7
19.9
29.3
0.16
0.56
11.3
7.5
11.8
12.3
13.4
7.9
9.3
14.2
10.7
15.7
16.7
17.8
10.9
12.5
32.9
14.2
23.4
35.7
22.9
11.1
24.4
55.6
25.2
35.1
49.9
39.6
14.8
36.5
86.9
40.8
50.3
67.5
63
19.2
52.1
0.02
0.09
0.02
0.02
0.02
0.08
0.1
0.07
0.44
0.1
0.1
0.1
0.35
0.28
15.5
13.5
13.6
15.5
6.7
14.4
12.3
22.3
19
18.5
20.7
8.9
20.5
16.3
41
34
65.6
36.6
15.3
46.5
25.7
56.7
54.7
96.4
62.3
25.8
66.5
42.6
75.8
82.5
135.5
97.7
40.3
91.4
65.8
0.02
0.02
0.02
0.02
0.12
0.02
0.02
0.11
0.07
0.08
0.1
0.52
0.16
0.17
19.4
9.8
23.8
15.4
43.8
18.4
68.4
29
100.9
42.9
0.02
0.03
0.09
0.19
12.8
16.7
16.3
19.5
20.6
24.2
39.4
53.4
27.2
59.9
73.9
40
86.6
99.1
56.2
0.01
0.02
0.02
0.07
0.15
0.05
13.1
20.7
60.2
101.8
159.2
0.04
0.16
23
D 6729 – 04e1
TABLE A1.2
GC/MS
No. for RR
IHA No.
A
930
848
A
A
940
942
858
870
A
947
879
A
IHA/
abbreviated
Name
13DM INDANE
HEXYLbenz
2Mnaphthalene
1Mnaphthalene
Continued
rmin
rest
rmax
Rmin
Rest
Rmax
Cmin
Cmax
5.3
10.3
17.9
31.3
43
57.3
0.01
0.18
9.8
6.4
15.1
8.9
21.9
12.1
61.2
17
96
21.6
141.8
27
0.01
0.04
0.13
0.64
7.5
11.6
16.9
25
29.8
35.2
0.02
0.27
The components that have been checked by GCMS by one of the participants on one of the samples that was used in the 1996 ASTM round robin.
TABLE A1.3 Group Summaries for the Gasolines Run in the 1996 ASTM Interlaboratory Cooperative Study
Name
rmin
rest
rmax
Rmin
Rest
Rmax
Cmin
Cmax
Paraffin
Isoparaffin
C2Benzene
Oxygenates
0.0562
0.0209
0.0334
0.0418
0.0646
0.024
0.0384
0.0491
0.08
0.03
0.05
0.06
0.125
0.047
0.057
0.104
0.186
0.065
0.073
0.141
0.373
0.102
0.102
0.221
1
20
3
3
20
65
20
20
A2. OXYGENATE LINEARITY STUDY
paraffins, and total naphthenes. The differences for benzene
and toluene among the indicated methods are well within the
reproducibilities of the methods. The sample numbers refer to
the interlaboratoy cooperative study samples. It should be
noted that the interlaboratory cooperative study samples included only spark ignition fuels and different results may be
obtained with pure blending components.
A2.1 This information is presented in Tables A2.1-A2.7 and
Figs. A2.1-A2.13.
A2.2 Tables A2.2-A2.7 show comparisons between this test
method and other methods for several compound types. Multidimensional PIONA is included since it tends to give reasonable peak compound type groupings for total olefins, total
24
D 6729 – 04e1
TABLE A2.1 Oxygenates Relative Response Factors
NOTE—All RRF relative to N-C7= 1.000; this also applies to the cooperative study.
Methanol
Ethanol
t-butanol
MTBE
ETBE
TAME
Laboratory
No. 1
Laboratory
No. 2
Laboratory
No. 3
Laboratory
No. 4
Laboratory
No. 5
Laboratory
No. 6
Laboratory
No. 7
Average
RRF
Standard
Deviation
% Standard
Deviation
2.921
1.997
1.274
1.508
1.352
1.308
2.957
2.043
1.282
1.523
1.349
1.323
2.903
2.003
1.329
1.552
1.406
1.342
2.795
2.057
1.305
1.791
1.543
1.451
3.085
2.138
1.297
1.508
1.369
1.336
3.391
2.354
1.429
1.658
1.509
1.471
2.923
2.014
1.2
1.498
1.319
1.264
2.996
2.087
1.302
1.577
1.407
1.356
.194
.127
.069
.109
.086
.076
6.465
6.1
5.281
6.932
6.108
5.593
TABLE A2.2 Benzene
Benzene (weight %)
Sample
2
6
8
10
13
14
Average
D 5580
D 6729
1.52
1.05
1.10
1.13
0.14
0.62
0.93
1.61
1.12
1.16
1.18
0.16
0.70
0.99
TABLE A2.3 Toluene
Toluene (weight %)
Sample
2
6
8
10
13
14
Average
D 5580
D 6729
4.3
2.1
10.1
5.0
3.3
4.4
4.9
4.6
1.9
11.4
6.1
2.9
5.3
5.4
TABLE A2.4 Total Aromatics
Total Aromatics (weight %)
Sample
2
6
8
10
13
14
Average
A
D 5580
PIONAA
D 6729
30.3
18.9
49.1
23.9
19.7
23.8
27.6
28.2
18.7
49.0
24.5
19.8
24.6
27.5
32.6
20.0
51.0
25.4
22.4
27.5
29.8
Multidimensional PIONA.
25
D 6729 – 04e1
TABLE A2.5 Total Olefins
Total Olefins (weight %)
Sample
PIONAA
D 6729
7.1
9.8
6.6
15.1
11.1
24.6
12.4
4.4
9.4
6.2
13.7
11.1
22.2
11.2
2
6
8
10
13
14
Average
A
Multidimensional PIONA.
TABLE A2.6 Total Oxygenates
Total Oxygenates (weight %)
Sample
PIONAA
Procedure B
15.3
7.0
4.2
>8
20.5
2.8
N/A
16.1
8.1
4.5
10.0
19.9
3.2
10.3
B
2
6B
8B
10C
13B
14B
Average
A
B
C
Multidimensional PIONA.
Major oxygenate = MTBE.
Major oxygenate = Ethanol.
TABLE A2.7 Total Paraffins and Total Napthenes
Total Paraffins (weight %)
Sample
8
10
13
14
Average
A
Total Naphthenes (weight %)
PIONAA
D 6729
PIONAA
D 6729
35.6
41.1
42.6
34.1
38.4
35.0
42.3
43.0
37.9
39.6
2.2
5.6
1.3
5.9
3.8
2.8
6.7
3.5
7.6
5.2
Multidimensional PIONA.
26
D 6729 – 04e1
FIG. A2.1 IHA Method Oxygenates Linearity Cooperative Study–Laboratory 1
27
D 6729 – 04e1
FIG. A2.2 IHA Method Oxygenates Linearity Cooperative Study–Laboratory 2
28
D 6729 – 04e1
FIG. A2.3 IHA Method Oxygenates Linearity Cooperative Study–Laboratory 3
29
D 6729 – 04e1
FIG. A2.4 IHA Method Oxygenate Linearity Cooperative Study–Laboratory 4
30
D 6729 – 04e1
FIG. A2.5 IHA Method Oxygenate Linearity Cooperative Study–Laboratory 5
31
D 6729 – 04e1
FIG. A2.6 IHA Method Oxygenate Linearity Cooperative Study–Laboratory 6
32
D 6729 – 04e1
FIG. A2.7 IHA Method Oxygenate Linearity Cooperative Study–Laboratory 7
33
D 6729 – 04e1
FIG. A2.8 Determination of Calculated Oxygenate Response from IHA Method–Methanol
FIG. A2.9 Determination of Calculated Oxygenate Response from IHA Method–Ethanol
FIG. A2.10 Determination of Calculated Oxygenate Response from IHA Method–t-Butanol
34
D 6729 – 04e1
FIG. A2.11 Determination of Calculated Oxygenate Response from IHA Method–MTBE
FIG. A2.12 Determination of Calculated Oxygenate Response from IHA Method–ETBE
FIG. A2.13 Determination of Calculated Oxygenate Response from IHA Method–TAME
35
D 6729 – 04e1
APPENDIXES
(Nonmandatory Information)
X1. BIBLIOGRAPHY
X1.1 The following publications on DHA analyses may be
useful as background and are recommended to the user of these
test procedures:
X1.1.1 Johansen, N.G. and Ettre, L.S., “Retention Index
Values of Hydrocarbons on Open Tubular Columns Coated
with Methyl Silicone Liquid Phases,” Chromatographia, Vol 5,
No. 10, Oct 1982
X1.1.2 Johansen, N.G., Ettre, L.S., and Miller, R.L., “Quantitative Analysis of Hydrocarbons by Structural Group Type in
Gasolines and Distillates. Part 1,” Journal of Chromatography,
256, 1983, pp. 393-417
X1.1.3 Kopp, V.R., Bones, C.J., Doerr, D.G., Ho, S.P., and
Schubert, A.J., “Heavy Hydrocarbon/Volatility Study: Fuel
Blending and Analysis for the Auto/Oil Air Quality Improvement Research Program,” SAE Paper No. 930143, March 1993
X1.1.4 Schubert, A.J. and Johansen, N.J., “Cooperative
Study to Evaluate a Standard Test Method for the Speciation of
Gasolines by Capillary Gas Chromatography,” SAE Paper No.
930144, March 1993
X1.1.5 Di Sanzo, F. P. and Giarrocco, V. G., “Analysis of
Pressurized Gasoline-Range Liquid Hydrocarbon Samples by
Capillary Column and PIONA Analyzer Gas Chromatography,” Journal of Chromatographic Science, Vol 26, June 1988,
pp 258-266
X1.1.6 Durand, J. P., Beboluene, J. J. and Ducrozet, A.,
“Detailed Characterization of Petroleum Products with Capillary GC Analyzers,” Analusis, 23, 1995, pp 481-483
X1.1.7 Canadian General Standards Board: CAN/CGSB
-3.0, No.14.3-94, “Test Method for Individual Hydrocarbon
Component Analysis (IHA) in Spark Ignition Engine Fuels by
Gas Chromatography”
X1.1.8 French Standard NF N07-086, December 1995,
“Determination of Hydrocarbon Type Contents in Motor Gasolines from Detailed Analysis Capillary Gas Chromatography”
X2. HYDROCARBON DATA USING HYDROGEN CARRIER
based on a 35°C isothermal analysis of pentane (n-C5).
X2.1 This appendix presents a modification of the test
method that decreases the total analysis time from 150 minutes
to 82 minutes. The primary change is the use of hydrogen
rather than helium as the carrier gas. The oven temperature
ramp and column flow rates are also modified in order to
ensure optimum resolution and linear velocity. All remaining
operating parameters of the GC remain as stated in the method.
Column performance tests are included in order to evaluate
method performance. This appendix includes a chromatogram
with components identified, as well as the component list
analyzed with the test conditions specified in Table X2.1.
X2.6 Figs. X2.6-X2.11 presents, in detail, the identified
CGSB0496 gasoline standard analyzed under the conditions
stated in Table X2.1.
X2.7 Table X2.4 presents the summary of coeluting compounds.
X2.8 Table X2.5 presents the component retention times
and properties of the compounds identified in the CGSB0496
standard.
X2.9 All sections of Test Method D 6729 should be
followed as written, except for the following:
X2.9.1 In 7.2, hydrogen gas is used rather than helium as the
carrier gas.
X2.9.2 In 8.1, the Linear Gas Velocity is now set to 31.0 psi
constant pressure that corresponds to an average linear velocity
of 42 cm/s at 35°C. This linear velocity value is optimum for
hydrogen. Under these isothermal conditions, methane should
elute at 3.9 minutes. Using the conditions described in Table
X2.1, methane should elute at 3.6 minutes.
X2.9.3 The Table 1 chromatographic operating conditions
are now modified as in Table X2.1.
X2.2 Table X2.1 presents the chromatographic operating
conditions, column requirements, and data acquisition requirements. These conditions will elute all components up to and
including pentadecane (n-C15).
X2.3 Table X2.2 presents the column resolution performance requirements.
X2.4 Figs. X2.1-X2.5 present chromatographic examples
of each critical separation described in Table X2.2.
X2.5
Table X2.3 presents the column efficiency results
36
D 6729 – 04e1
TABLE X2.4 Coleuting CompoundsA,B
TABLE X2.1 Instrument Parameters
Chromatographic Conditions
Requirements
Carrier gas
Injector settings
Injector temperature, °C
Split ratio
Liner
Injection volume
Detector settings
FID temperature, °CA
Hydrogen flow, mL/minB
Air flow, mL/min
Nitrogen make-up flow, mL/min
Column oven settings
Initial temperature, °C
Initial hold time, min
1st ramp rate, °C/min
Final temperature, °C
Final hold time, min
2nd ramp rate, °C/min
Final temperature, °C
Final hold time, min
3rd ramp rate, °C/min
Final temperature, °C
Final hold time, minC
Column requirements
Length, m
Inside diameter, mm
Liquid phase
Film thickness, µm
Pressure (Constant), psi
Flow, mL/min (range)
Linear gas velocity, cm/s (range)
Data acquisition, Hz
Total analysis time, min (including clean-up time)
Hydrogen
270
200:1
deactivated glass
0.2 µL
300
40
450
20
RT
Predominant Peak
Coeluting Compound
23.00
27.13
29.36
38.76
41.32
44.59
54.27
55.27
72.54
methylcyclopentane
3,3-dimethylpentane
2-methylhexane
2,5-dimethylhexane
toluene
3-methylheptane
4-methyloctane
o-xylene
1,2,3,4-tetramethylbenzene
2,2-dimethylpentane
5-methyl-1-hexene
2,3-dimethylpentane and C7-olefin
C8-olefin
2,3,3-trimethylpentaneC
t-1,4-dimethylcyclohexane
C9-olefin
1,1,2-trimethylcyclohexane
C11-aromatic
A
Due to the possibility of coeluting peaks in other areas, the user is cautioned
in the interpretation of the data.
B
Manual integration may be necessary in many areas of the chromatogram.
C
The 233-TMC5 is partially resolved as a shoulder of the toluene peak.
0
9.5
1.5
50
0
3.14
130
0
6.28
270
0
100
0.25
100 % polydimethylsiloxane
0.5
31.0
3.3 – 1.0
46 – 29
20
90.6
FIG. X2.1 2,3-dimethylbutane and methyl t-butyl ether
R = 2(15.698 − 15.487) / 1.699(0.0603 + 0.0633) = 2.01
A
Set to 25-50°C above the highest column temperature.
Values to be set as recommended by instrument manufacturer.
C
Final hold time or temperature may be adjusted to ensure complete elution of
the sample components.
B
TABLE X2.2 Column Resolution Performance Requirements
Component Pair
74
78
156
158
304
306
474
476
876
878
2,3-Dimethylbutane
Methyl t-butyl ether
Benzene
1-methylcyclopentene
Toluene
2,3,3-trimethylpentane
m-Xylene
p-Xylene
n-Tridecane
1-methylnaphthalene
Minimum
Resolution
Concentration of
Each Component, w/w
1.0
0.99 %
1.23 %
0.83 %
0.49 %
7.65 %
0.65 %
3.95 %
1.58 %
0.01 %
0.02 %
1.0
0.4
0.4
1.0
TABLE X2.3 Column Efficiency
(Based on 35°C Isothermal Analysis)
Component
RT (min)
Peak Width (1⁄2 h)
Theoretical Plates
38 n-Pentane
5.406
0.0178
511 462
FIG. X2.2 Benzene and 1-methylcyclopentene
R = 2(26.269 − 26.131) / 1.699(0.0654 + 0.0684) = 1.21
37
D 6729 – 04e1
FIG. X2.3 Toluene and 2,3,3-trimethylpentane
R = 2(41.378 − 41.317) / 1.699(0.0832 + 0.0383) = 0.59
FIG. X2.4 m-xylene and p-xylene
R = 2(53.371 − 53.275) / 1.699(0.0558 + 0.0506) = 1.08
FIG. X2.5 Tridecane and 1-methylnaphthalene
R = 2(78.639 − 78.542) / 1.699(0.0486 + 0.0375) = 1.32
38
D 6729 – 04e1
FIG. X2.6 Detailed Chromatogram for CGSB0496 Reference Gasoline (0 – 17 min)
39
D 6729 – 04e1
FIG. X2.7 Detailed Chromatogram for CGSB0496 Reference Gasoline (17 – 30.5 min)
40
D 6729 – 04e1
FIG. X2.8 Detailed Chromatogram for CGSB0496 Reference Gasoline (30.5 – 42.5 min)
41
D 6729 – 04e1
FIG. X2.9 Detailed Chromatogram for CGSB0496 Reference Gasoline (42.5 – 55.5 min)
42
D 6729 – 04e1
FIG. X2.10 Detailed Chromatogram for CGSB0496 Reference Gasoline (55.5 – 68.5 min)
43
D 6729 – 04e1
FIG. X2.11 Detailed Chromatogram for CGSB0496 Reference Gasoline (68.5 – 82 min)
44
D 6729 – 04e1
TABLE X2.5 Component Retention Times and Properties
Peak Number and Component Name
1
2
3
4
5
6
7
8
9
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
Methane
Ethene
Ethane
Propene
Propane
Isobutane
Methanol
Isobutene
1-Butene
1,3-Butadiene
n-Butane
trans-2-Butene
2,2-Dimethylpropane
cis-2-Butene
1,2-Butadiene
Ethanol
3-Methyl-1-butene
Isopentane
1,4-Pentadiene
2-Butyne (Dimethylacetyle
1-Pentene
Isopropanol
2-Methyl-1-butene
n-Pentane
2-Methyl-1,3-butadiene
trans-2-Pentene
3,3-Dimethyl-1-butene
cis-2-Pentene
tert-Butanol (TBA)
2-Methyl-2-butene
trans-1,3-Pentadiene
3-Methyl-1,2-butadiene
Cyclopentadiene
cis-1,3-Pentadiene
1,2-Pentadiene
2,2-Dimethylbutane
Cyclopentene
4-Methyl-1-pentene
3-Methyl-1-pentene
n-Propanol
Cyclopentane
2,3-Dimethylbutane
2,3-Dimethyl-1-butene
Methyl-tert-butyl ether (
cis-4-Methyl-2-pentene
2-Methylpentane
trans-4-Methyl-2-pentene
Methylethylketone (MEK)
3-Methylpentane
C6-Olefin
2-Methyl-1-pentene
1-Hexene
Methyl-sec-butyl ether
C6-Olefin
2-Butanol
2-Ethyl-1-butene
n-Hexane
cis-3-Hexene
Di-isopropylether (DIPE)
trans-3-Hexene + Hexadie
2-Methyl-2-pentene
3-Methylcyclopentene
trans3-Methyl-2-pentene
cis-2-Hexene
3,3-Dimethyl-1-pentene
cis-3-Methyl-2-pentene
Ethyl-tert-butyl ether (
2,3-Dimethyl-1,3-butadie
Methylcyclopentane
2,2-dimethylpentane
4,4-Dimethyl-1-pentene
Isobutanol
2,3-Dimethyl-2-butene
2,4-Dimethylpentane
45
RT (min)
MW
RRF
3.89
3.93
3.97
4.01
4.05
4.70
4.92
5.13
5.15
5.24
5.33
5.59
5.65
5.97
6.39
6.83
7.12
7.96
8.25
8.55
8.84
9.07
9.31
9.60
9.89
10.23
10.60
10.81
10.92
11.19
11.39
11.39
11.63
11.87
12.11
12.42
13.96
14.68
14.70
14.89
15.05
15.49
15.62
15.70
16.03
16.15
16.42
17.08
17.73
18.10
18.46
18.60
18.95
19.29
19.63
19.97
20.03
20.45
20.60
20.74
21.04
21.19
21.28
21.86
22.29
22.70
22.87
22.94
23.00
23.05
23.19
23.37
23.55
24.03
16.04
28.03
30.05
42.05
44.06
58.08
32.03
56.06
56.06
54.09
58.08
56.06
72.09
56.06
54.09
46.04
70.08
72.09
68.06
54.05
70.08
60.06
70.08
72.09
68.06
70.08
84.09
70.08
74.12
70.08
68.06
68.06
67.10
68.06
68.06
86.11
68.06
84.09
84.09
60.06
70.08
86.11
84.09
88.09
84.09
86.11
84.09
72.06
86.11
84.09
84.09
84.09
88.09
84.09
74.07
84.09
86.11
84.09
102.00
84.09
84.09
82.10
84.09
84.09
98.19
84.09
102.18
82.00
84.09
100.13
98.19
74.12
84.09
100.13
1.000
0.874
0.937
0.874
0.916
0.906
2.672
0.874
0.874
0.843
0.906
0.874
0.899
0.874
0.843
1.862
0.874
0.899
0.849
0.843
0.874
1.950
0.874
0.899
0.849
0.874
0.874
0.874
1.161
0.874
0.849
0.849
0.824
0.849
0.849
0.895
0.849
0.874
0.874
1.770
0.874
0.895
0.874
1.407
0.874
0.895
0.874
1.570
0.895
0.874
0.874
0.874
1.550
0.874
1.600
0.874
0.895
0.874
1.600
0.874
0.874
0.853
0.874
0.874
0.874
0.874
1.255
0.853
0.874
0.892
0.874
1.500
0.874
0.892
D 6729 – 04e1
TABLE X2.5
Peak Number and Component Name
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
23
270
272
274
276
278
280
282
284
1,3,5-Hexatriene
2,2,3-Trimethylbutane
Methylcyclopentadiene
C7-Olefin
C7-Olefin
C7-Diolefin
4-Methylcyclopentene
Methylenecyclopentane
Benzene
1-Methyl-1-cyclopentene
C7-Olefin
cis-2-Methyl-3-hexene
3,3-dimethylpentane+5-me
Cyclohexane
trans-2-Methyl-3-hexene
3,3-dimethyl-1,4-pentad
n-Butanol
Dimethylcyclopentadiene
t,2-ethyl-3methyl-1-bute
4-Methyl -1-hexene
C7-Olefin
3-Methyl-1-hexene
4-Methyl-2-hexene
2-Methylhexane + C7-Ole
2,3-Dimethylpentane
Cyclohexene
tert-Amyl-methyl ether
C7-Olefin
C7-Olefin
3-Methylhexane
C7-Olefin
C7-Olefin
trans-1,3-Dimethylcyclop
cis-1,3-Dimethylcyclope
trans-1,2-Dimethylcyclo
3-Ethylpentane
C7-Olefin
2,2,4-Trimethylpentane
C7-Olefin
1-Heptene
C7-Olefin
2,3-Dimethyl-1,3-pentadi
C7-Diolefin
C7-Olefin
C7-Diolefin
C7-Diolefin
C7-Olefin
n-Heptane
cis-3-Heptene
2-Methyl-2-hexene
cis-3-Methyl-3-hexene
trans-3-Heptene
3-Ethyl-2-pentene
1,5-dimethylcyclopenten
trans-2-Methyl-3-hexene
C7-Diolefin+C7Triolefin
2,3-Dimethyl-2-pentene
3-Ethylpentene
Methylcyclohexane
C7-Olefin
1,1,3-Trimethylcyclopen
2,2-Dimethylhexane
2,3,4-TriM-1,4-C5diene
3,3-dimethyl-1,5-hexadie
C8-Diolefin
C7-Olefin
Ethylcyclopentane
3-Methylcyclohexene
Methylcyclohexadiene
2,2,3-Trimethylpentane
2,5-dimethylhexane + C82,4-Dimethylhexane
C7-Triolefin+C8-Olefin
trans,cis-1,2,4-Trimethy
46
Continued
RT (min)
MW
RRF
24.22
24.33
24.77
24.83
25.13
25.43
25.71
26.01
26.13
26.27
26.64
26.82
27.19
27.32
27.78
28.18
28.29
28.33
28.52
28.71
28.86
29.00
29.14
29.37
29.52
29.62
29.89
30.11
30.33
30.55
30.71
30.88
31.04
31.42
31.82
31.95
32.12
32.22
32.47
32.49
32.57
32.87
33.11
33.35
33.64
33.85
33.95
34.15
34.29
34.49
34.65
34.89
35.00
35.11
35.46
35.72
35.96
36.12
36.25
36.58
36.90
37.24
37.60
37.63
37.69
37.93
38.10
38.34
38.43
38.53
38.76
38.97
39.19
39.46
80.00
100.13
80.00
98.19
98.19
96.00
82.10
82.10
78.05
82.10
98.19
98.19
100.13
84.09
98.19
96.00
74.07
94.16
98.19
98.19
98.19
98.19
98.19
100.13
100.13
82.10
102.18
98.19
98.19
100.13
98.19
98.19
98.11
98.11
98.11
100.10
98.19
114.14
98.19
98.19
98.19
96.18
96.00
98.19
96.00
96.00
98.19
100.13
98.19
98.19
98.19
98.19
96.17
96.17
98.19
96.00
98.19
98.19
98.11
98.19
112.10
114.10
110.00
110.21
98.19
98.19
98.11
96.17
94.17
114.10
114.14
114.14
96.18
112.10
0.832
0.892
0.832
0.874
0.874
0.856
0.853
0.853
0.812
0.853
0.874
0.874
0.892
0.874
0.874
0.856
1.500
0.838
0.874
0.874
0.874
0.874
0.874
0.892
0.892
0.853
1.210
0.874
0.874
0.892
0.874
0.874
0.874
0.874
0.874
0.892
0.874
0.890
0.874
0.874
0.874
0.874
0.856
0.874
0.856
0.856
0.874
0.892
0.874
0.874
0.874
0.874
0.856
0.856
0.874
0.856
0.874
0.874
0.874
0.874
0.874
0.890
0.859
0.859
0.874
0.874
0.874
0.856
0.838
0.890
0.890
0.890
0.856
0.874
D 6729 – 04e1
TABLE X2.5
Peak Number and Component Name
286
288
292
294
296
298
290
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
382
380
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
414
416
418
420
422
424
426
428
430
432
3,3-DMC6 + C8-olefin
C7-Triolefin+C8-Olefin
t,c-1,2,3-TriMcycloC5
C8-Olefins
C8-Olefins
C8-Olefins
C8-Olefins
2,3,4-Trimethylpentane
C7-Diolefin
Toluene
2,3,3-Trimethylpentane
C8-Olefin
C8-Diolefin
C8-Olefin
C8-Olefin
C8-Olefin
C8-Diolefin + C8-Olefin
2,3-Dimethylhexane
2-methyl-3-ethylpentane
1,1,2-TriMcycloC5
C8DiolefinC8-paraffin
C8-Olefins
C8-Olefins
2-Methylheptane
4-Methylheptane
C8-Diolefin + C7-Olefin
C8-Olefins
cis-1,4-DiMcycloC6
trans-1,4-DiMcycloC6
3-Methylheptane
3-Ethylhexane
C8-Diolefin
C8-Olefins
C8-Olefin
1,1-dimethylcyclohexane
C8-Olefin
C8-Olefin
cis-1-Ethyl-3-methylcyC
2,2,5-Trimethylhexane
t-1-E-3-McyC5
t-1-E-2-McyC5
1-methyl-1-ethylcyclope
1-Octene
C8-Olefin
t-1,2-DiMcycloC6
C8-Olefins
C8-olefin
C8-olefins
trans-3-C8-Olefin
t-1,3-DiMcycloC6
c-1,4-DiMcycloC6
n-Octane
C8-Olefin
C8-Olefin
trans-2-Octene
Isopropylcyclopentane
C9-Olefin
C9-Olefin
C9-Olefin
C9-Olefin
2,2,4-Trimethylhexane
2,4,4-Trimethylhexane
C9-Olefins
2,3,5-Trimethylhexane
cis-2-Octene
2,2,3,4-TetraMC5
2,2-Dimethylheptane
c-1,2-DiMcycloC6
2,4-Dimethylheptane
C9-Olefin
C9-Olefin
Ethylcyclohexane
Propylcyclopentane
2-Methyl-4-Ethylhexane
47
Continued
RT (min)
MW
RRF
39.75
39.92
40.50
40.57
40.63
40.69
40.79
40.94
41.11
41.32
41.38
41.54
41.99
42.08
42.26
42.35
42.41
42.68
42.84
43.09
43.23
43.37
43.52
43.66
43.83
44.01
44.11
44.37
44.51
44.61
44.71
44.89
45.06
45.14
45.24
45.43
45.58
45.87
45.96
46.11
46.26
46.34
46.48
46.61
46.71
46.79
46.96
47.12
47.23
47.49
47.59
47.84
47.92
48.03
48.19
48.32
48.35
48.59
48.71
48.76
48.88
48.89
48.92
49.03
49.10
49.70
49.96
50.08
50.36
50.46
50.54
50.59
50.67
50.90
114.14
96.18
112.10
112.13
112.13
112.13
112.13
114.14
96.00
92.06
114.23
112.13
110.00
112.13
112.13
112.13
110.00
114.14
114.14
112.10
110.00
112.13
112.13
114.14
114.14
112.10
112.13
112.10
112.10
114.14
114.14
110.00
112.13
112.13
112.13
112.13
112.13
112.10
128.20
112.10
112.10
112.22
112.13
112.13
112.10
112.13
112.22
112.22
112.11
112.13
112.10
114.14
112.13
112.13
112.13
112.10
126.14
126.14
126.14
126.14
128.16
128.16
126.14
128.16
112.13
128.16
128.16
112.10
128.16
126.14
126.14
112.10
112.10
128.20
0.890
0.856
0.874
0.874
0.874
0.874
0.874
0.890
0.856
0.821
0.890
0.874
0.859
0.874
0.874
0.874
0.859
0.890
0.890
0.874
0.859
0.874
0.874
0.890
0.890
0.856
0.874
0.874
0.874
0.890
0.890
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.888
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.890
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.874
0.888
0.888
0.874
0.888
0.874
0.888
0.888
0.874
0.888
0.874
0.874
0.874
0.874
0.888
D 6729 – 04e1
TABLE X2.5
Peak Number and Component Name
434
436
438
440
442
444
446
448
450
452
454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
502
504
506
508
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550
552
554
556
558
560
562
564
566
568
570
572
574
576
578
580
2,6-Dimethylheptane
C9-Olefin
1,1,4-TriMcycloC6
C9-Olefins
C9-Olefins
1,1,3-trimethylcyclohex
2,5 & 3,5-DMheptane
C9-Olefins
3,3-Dimethylheptane
C9-Isoparaffin
C9-Olefins
2,3,3-Trimethylhexane
C9-Olefins
Ethylbenzene
C9-Olefins
t-1,2,4-TrimethylcyC6
C9-Olefins
2,3,4-Trimethylhexane
C9-olefin
3,3,4-Trimethylhexane
m-Xylene
p-Xylene
2,3-Dimethylheptane
3,5-Dimethylheptane
3,4-Dimethylheptane
C9-Olefin
3-Methyl-3-ethylhexane
C9-Olefin
4-Ethylheptane
4-MC8+C9-Olefin
2-Methyloctane
C9-Olefin
C9-Isoparaffin
C9-Olefin
3-Ethylheptane
3-Methyloctane
C9-Isoparaffin
c-1,2,4-TriMcyC6
1,1,2-TriMcycloC6
o-Xylene
C9-Olefin
C9-Isoparaffin
C9-Isoparaffin
C9-olefin
t-1-E-4-M-cyC6
cis-1-E-4-McyC6
C9-Isoparaffin
1-Nonene
Isobutylcyclopentane
C9-Isoparaffin
trans-3-Nonene
cis-3-Nonene
C9-Isoparaffin
n-Nonane
C10-Olefin
trans-2-Nonene
1-M-1-Ecyclohexane
1-M-2-PcycloC5
C10-Olefin
C10-Isoparaffin
C10-Isoparaffin
Isopropylbenzene
cis-2-Nonene
tert-Butylcyclopentane
C9-Olefins
nonene
Isopropylcyclohexane
3,3,5-Trimethylheptane
2,2-Dimethyloctane
2,4-Dimethyloctane
1-M-4-isopropylcyC6
sec-Butylcyclopentane
Propylcylohexane
2,5-Dimethyloctane
48
Continued
RT (min)
MW
RRF
51.02
51.14
51.21
51.29
51.44
51.45
51.64
51.69
51.76
51.90
52.05
52.30
52.38
52.44
52.58
52.69
52.76
52.88
52.94
53.07
53.28
53.37
53.54
53.71
53.76
53.89
53.99
54.09
54.14
54.27
54.36
54.47
54.67
54.74
54.81
54.93
55.02
55.08
55.10
55.24
55.38
55.47
55.56
55.63
55.81
55.90
56.09
56.32
56.45
56.74
56.89
57.03
57.16
57.26
57.40
57.48
57.63
57.70
57.79
57.87
57.96
58.03
58.12
58.15
58.30
58.42
58.47
58.61
58.78
58.90
59.00
59.16
59.19
59.31
128.20
126.14
126.14
126.14
126.14
126.24
128.16
126.14
128.20
128.26
126.14
128.16
126.14
106.08
126.14
126.14
126.14
128.20
126.24
128.16
106.08
106.08
128.16
128.20
128.16
126.14
128.16
126.14
128.16
128.20
128.20
126.14
128.20
126.14
128.20
128.20
126.14
126.14
126.14
106.08
126.14
128.26
128.26
128.20
126.14
126.14
128.20
126.14
126.14
128.20
126.14
126.14
128.20
128.16
140.16
126.14
126.14
126.14
140.16
142.17
142.17
118.08
126.14
126.14
126.14
126.24
126.14
142.17
142.17
142.17
140.16
126.14
126.14
142.17
0.888
0.874
0.874
0.874
0.874
0.874
0.888
0.874
0.888
0.888
0.874
0.888
0.874
0.827
0.874
0.874
0.874
0.888
0.874
0.888
0.827
0.827
0.888
0.888
0.888
0.874
0.888
0.874
0.888
0.888
0.888
0.874
0.888
0.874
0.888
0.888
0.874
0.874
0.874
0.827
0.874
0.888
0.888
0.874
0.874
0.874
0.888
0.874
0.874
0.888
0.874
0.874
0.888
0.888
0.874
0.874
0.874
0.874
0.874
0.887
0.887
0.832
0.874
0.874
0.874
0.874
0.874
0.887
0.887
0.887
0.874
0.874
0.874
0.887
D 6729 – 04e1
TABLE X2.5
Peak Number and Component Name
582
584
586
588
590
592
594
596
598
600
602
604
606
608
610
612
614
616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
646
648
654
656
652
650
658
660
662
664
666
668
670
674
676
672
678
680
682
684
686
688
690
692
694
696
698
700
702
704
706
708
710
712
714
716
718
720
722
724
726
728
Butylcyclopentane
2,6-Dimethyloctane
3,6-Dimethyloctane
1-M-2-EcycloC6
C10-Olefin
Propylbenzene
3,3-Dimethyloctane
3-Methyl-5-ethylheptane
C10-Olefin
1-Ethyl-3-methylbenzene
1-Ethyl-4-methylbenzene
Naphthene
1,3,5-Trimethylbenzene
2,3-Dimethyloctane
5-Methylnonane
4-Methylnonane
2-Methylnonane
1-Ethyl-2-methylbenzene
3-Ethyloctane
Naphthene
3-Methylnonane
C10-Olefin
C10-Isoparaffin
C10-Isoparaffin
1,2,4-Trimethylbenzene
C10-Isoparaffin
C10-Isoparaffin
Isobutylcyclohexane
C10-Isoparaffin
C10-Isoparaffin
1-Decene
C10-Isoparaffin
C10-Isoparaffin
C10-Aromatic
Isobutylbenzene
t-1-M-2-propylcyC6
Naphthene
C10-Isoparaffin
C10-Isoparaffin
sec-Butylbenzene
n-Decane
C11-Isoparaffin
C11-Isoparaffin
1,2,3-Trimethylbenzene
1-M-3-isopropylbenzene
1-M-4-isopropylbenzene
C11-Isoparaffin
C11-Isoparaffin
C11-Isoparaffin
2,3-Dihydroindene
sec-Butylcyclohexane
C11-IsoParrafin
1-M-2-isopropylbenzene
3-Ethylnonane
C11-Isoparaffin
Naphthene
C11-Isoparaffin
1,3-Diethylbenzene
1-M-3-propylbenzene
1,4-Diethylbenzene
1-M-4-propylbenzene
Butylbenzene
3,5-DM-1-Ebenzene
1,2-Diethylbenzene
C11-Isoparaffin
C10-Aromatic
C10-Aromatic
C10-Aromatic
1-M-2-propyl benzene
C10-Aromatic
5-Methyldecane
4-Methyldecane
2-Methyldecane
C11-Isoparaffin
49
Continued
RT (min)
MW
RRF
59.62
59.63
59.97
60.05
60.21
60.30
60.51
60.61
60.69
60.87
61.01
61.26
61.30
61.43
61.83
61.95
62.11
62.21
62.37
62.45
62.58
62.77
62.92
62.99
63.18
63.30
63.37
63.51
63.62
63.67
63.72
63.81
63.92
63.99
64.11
64.24
64.26
64.29
64.36
64.38
64.49
64.65
64.74
65.01
65.10
65.32
65.47
65.50
65.57
65.75
66.07
66.12
66.15
66.31
66.38
66.48
66.63
66.84
67.01
67.10
67.25
67.32
67.42
67.59
67.86
67.98
68.01
68.09
68.14
68.14
68.17
68.20
68.25
68.36
126.14
142.17
142.17
126.14
140.16
120.09
142.17
142.17
140.16
120.09
120.09
140.27
120.09
142.17
142.17
142.17
142.17
120.09
142.17
140.16
142.17
140.16
142.17
142.17
120.09
142.17
142.17
140.27
142.28
142.37
140.27
142.28
142.17
134.11
134.11
140.16
140.16
142.17
142.17
134.11
142.17
156.19
156.19
120.09
134.11
134.11
156.19
156.19
156.19
118.08
140.16
156.19
134.11
156.19
156.19
140.16
126.19
134.11
134.11
134.11
134.11
134.11
134.11
134.11
156.19
134.11
134.11
134.11
134.11
134.22
156.19
156.19
156.32
156.19
0.874
0.887
0.887
0.874
0.874
0.832
0.887
0.887
0.874
0.832
0.832
0.874
0.832
0.887
0.887
0.887
0.887
0.832
0.887
0.874
0.887
0.874
0.887
0.887
0.832
0.887
0.887
0.874
0.887
0.887
0.874
0.887
0.887
0.837
0.837
0.874
0.874
0.887
0.887
0.837
0.887
0.886
0.886
0.832
0.837
0.837
0.886
0.886
0.886
0.819
0.874
0.886
0.837
0.886
0.886
0.874
0.886
0.837
0.837
0.837
0.837
0.837
0.837
0.837
0.886
0.837
0.837
0.837
0.837
0.837
0.886
0.886
0.886
0.886
D 6729 – 04e1
TABLE X2.5
Peak Number and Component Name
730
732
734
736
738
740
742
744
746
748
750
752
754
756
758
760
762
764
766
768
770
772
774
776
778
780
782
784
786
788
790
792
794
796
798
800
802
804
806
808
810
812
814
816
818
820
822
824
826
828
830
832
834
836
838
840
842
844
846
848
850
852
854
856
858
860
862
864
866
868
870
872
874
876
1,4-DM-2-Ebenzene
1,3-DM-4-Ebenzene
C11-Isoparaffin
3-Methyldecane
C1-indane
1,2-DM-4-Ebenz+C1indan
C11-Isoparaffin
1,3-DM-2-Ebenzene
C11-Isoparaffin
C11-Isoparaffin
1-M-4-tert-butylbenzene
1,2-DM-3-ethylbenzene
1-E-2-isopropylbenzene
n-Undecane
1-E-4-isopropylbenzene
C12-Isoparaffin
1,2,4,5-TetraMbenzene
2-Methylbutylbenzene
1,2,3,5-TetraMbenzene
3-methylbutylbezene
C11-Aromatic
C12-Isoparaffin
C11-Aromatic
C11-Aromatic
C11-Aromatic
1-tert-B-2-methylbenzen
C11-Aromatic
1-Ethyl-2-propylbenzene
C11-Aromatic
C11-Aromatic
C11-Aromatic
1-Methyl-3-butylbenzene
C11-aromatic
1,2,3,4-TetraMbz+C11aro
Pentylbenzene
t-1M-2-(4MC5)-cyC5
C11-Aromatic
C11-Aromatic
C11-Aromatic
C12-Isoparaffin
1,2,3,4-Tetrahydronapht
1-tert-Butyl-3,5-DMbz
Naphthalene
1,1-dimethylindane
1,2-dimethylindane
1,6-dimethylindane
C11-Aromatic
1-ethylindane
2-ethylindane
Ethyl-1,3,5-trimethylbe
1,3-dipropylbezene
n-Dodecane
Ethyl-1,2,4-trimethylbe
C11-Aromatic
C11-Aromatic
C12-aromatic+C2-indane
2,4-dimethylindane
4-ethylindane
1-tert-butyl-4-ethylbez
1,3-dimethylindane
1-methyl-4-pentylbezene
4,7-dimethylindane
5,6-dimethylindane
C12-aromatic
Hexylbezene
C6-Benzene
C6-benzene
C6-benzene
4,5-dimethylindane
C6-benzene
2-Methylnaphthalene
C6-benzene
C6-benzene
n-Tridecane
50
Continued
RT (min)
MW
RRF
68.59
68.71
68.77
68.95
68.99
69.05
69.12
69.48
69.78
69.92
70.06
70.18
70.35
70.49
70.57
70.70
70.82
70.90
71.00
71.03
71.04
71.14
71.33
71.41
71.47
71.69
71.80
71.86
72.03
72.17
72.24
72.35
72.47
72.54
72.73
72.80
72.95
73.16
73.19
73.23
73.35
73.53
73.72
73.82
73.92
74.00
74.10
74.18
74.33
74.44
74.61
74.98
75.38
75.61
75.90
75.98
76.07
76.20
76.30
77.10
77.20
77.23
77.26
77.30
77.33
77.36
77.45
77.50
77.60
77.75
78.09
78.19
78.28
78.54
134.11
134.11
156.19
156.19
132.21
134.11
156.19
134.11
156.19
156.19
148.13
134.11
148.13
156.19
148.13
170.20
134.11
148.13
134.11
148.25
148.13
170.20
148.13
148.13
148.13
148.13
148.13
148.13
148.13
148.13
148.13
148.13
148.25
148.25
148.13
168.33
148.13
148.13
148.13
170.20
132.09
162.30
128.06
146.10
146.10
146.10
148.25
146.10
146.10
148.25
162.34
170.20
148.25
148.10
148.13
162.30
146.10
146.10
162.30
146.10
162.30
146.10
146.10
162.30
162.30
162.30
162.30
162.30
146.10
162.30
142.08
162.30
162.30
184.22
0.837
0.837
0.886
0.886
0.837
0.837
0.886
0.837
0.886
0.886
0.840
0.837
0.840
0.886
0.840
0.885
0.837
0.840
0.837
0.840
0.840
0.885
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.840
0.874
0.840
0.840
0.840
0.885
0.824
0.843
0.799
0.829
0.829
0.829
0.840
0.829
0.829
0.840
0.843
0.885
0.840
0.840
0.840
0.843
0.829
0.829
0.843
0.829
0.843
0.829
0.829
0.843
0.843
0.843
0.843
0.843
0.829
0.843
0.806
0.843
0.843
0.884
D 6729 – 04e1
TABLE X2.5
Peak Number and Component Name
878
880
882
884
886
888
890
895
900
905
910
940
950
915
925
920
930
1-Methylnaphthalene
C6-benzene
C2-tetralin
C6-benzene
C6-benzene
C13-Isoparaffin
trans-7-Decene
2,6-Dimethylnaphthalene
2,7-Dimethylnaphthalene
N-tetradecane
1,3-Dimethylnaphthalene
1,2-Dimethylnaphthalene
n-Pentadecane
1,6-Dimethylnaphthalene
1,4-Dimethylnaphthalene
1,5-Dimethylnaphthalene
Acenaphthalene
Continued
RT (min)
MW
RRF
78.64
79.15
79.66
80.11
80.49
80.87
81.24
81.38
81.50
81.59
82.43
82.55
82.57
82.59
82.86
83.01
83.26
142.08
162.30
160.20
162.30
162.30
184.22
140.20
156.30
156.30
198.34
156.30
156.30
212.34
156.30
156.30
156.30
156.30
0.806
0.843
0.843
0.843
0.843
0.883
0.874
0.812
0.812
0.883
0.812
0.812
0.883
0.812
0.812
0.812
0.801
SUMMARY OF CHANGES
Subcommittee D02.04 has identified the location of selected changes to this standard since the last issue
(D 6729–01) that may impact the use of this standard.
(1) Added Appendix X2.
ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.
This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.
This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or [email protected] (e-mail); or through the ASTM website
(www.astm.org).
51