The quest for cosmic ray protons in clusters of galaxies “Astrophysical Seminar” Universität Würzburg Christoph Pfrommer (MPA) [email protected] The quest for cosmic ray protons in clusters of galaxies – p.1/31 Outline A.) Introduction and motivation 1.) cosmic rays in galaxies and clusters of galaxies 2.) cosmological implications 3.) hadronic cosmic ray proton interactions in the ICM B.) Cosmic rays in nearby clusters of galaxies 1.) γ -ray emission induced by cosmic ray protons 2.) minimum energy criterion: preferred CR profiles C.) Cosmic rays in the simulation code GADGET 1.) philosophy and description 2.) first results D.) Conclusions The quest for cosmic ray protons in clusters of galaxies – p.2/31 Galactic cosmic rays Galactic cosmic rays are dynamically important: • the pressure contained in cosmic ray protons and magnetic fields each contributes at least as much pressure as the thermal gas • escape time of cosmic rays from the galactic disc ∼ 107 years (radioactive clocks) • energy losses: CRe: synchrotron, inverse Compton, Coulomb CRp: inelastic collisions, Coulomb The quest for cosmic ray protons in clusters of galaxies – p.3/31 Cosmic rays in clusters of galaxies predictions for the CR pressure span between 10% and 50% of the cluster’s pressure budget • escape of cosmic ray protons only possible for energies ECRp > 2 × 1016 eV • • energy losses (for particles with E ∼ 10 GeV): Coma cluster: radio halo, CRe: synchrotron, inverse ν = 1.4 GHz, 2.5◦ × 2.0◦ Compton: τ ∼ 108 yr (Credit: Deiss/Effelsberg) CRp: inelastic collisions, Coulomb losses: τ ∼ 1010 yr ∼ Hubble time The quest for cosmic ray protons in clusters of galaxies – p.4/31 Cosmological implications cosmic rays provide an additional pressure component: → modifications of the hydrostatic mass estimates → additional heating of the ICM (cooling flow problem) • the equation of state of cosmic rays is ‘softer’ than the thermal component (γCRp ∼ 43 ): → effects on the baryonic halo profile → modification of the ICM evolution (entropy distribution) • the cosmic ray energy reservoir is cooling differently than the thermal: → influence on energetic feedback and star formation → prevents the ICM from overcooling • The quest for cosmic ray protons in clusters of galaxies – p.5/31 Hadronic cosmic ray proton interaction The quest for cosmic ray protons in clusters of galaxies – p.6/31 Gamma-ray source function 3 −1 −1 qγ (E γ ) n−1 GeV−1 ] N Np [γ cm s 10-14 αp = 2.0 αp = 2.4 αp = 2.7 αp = 3.0 αp = 3.5 10-16 10-18 • • π 0 -decay induced γ -ray source function qγ : 10-20 10-22 10-24 10-26 10-4 10-2 100 102 104 qγ ∝ E γ [GeV] αp = 2.0 αp = 2.4 αp = 2.7 αp = 3.0 αp = 3.5 0.2 ∆ qγ /qγ (E γ ) 0.1 PSfrag replacements CRp population: fCRp ∝ p−α • 0.0 "µ 2 Eγ mπ 0 c 2 ¶δ + µ 2 Eγ mπ 0 c 2 ¶−δ #−α/δ below: relative deviation of our analytic approach to simulated γ -ray spectra -0.1 -0.2 10-4 10-2 100 E γ [GeV] 102 104 this and the following work: Pfrommer & Enßlin 2003, 2004 The quest for cosmic ray protons in clusters of galaxies – p.7/31 Cooling core clusters are efficient CRp detectors ROSAT observation: Perseus galaxy cluster Credit: NASA/IoA/A.Fabian et al. Chandra observation: central region of Perseus Credit: ROSAT/PSPC The quest for cosmic ray protons in clusters of galaxies – p.8/31 Cooling core cluster model of CRp detection εCRp= X CRpε th Perseus galaxy cluster CRp π p 0 γ Chandra observation: γ central region of Perseus The quest for cosmic ray protons in clusters of galaxies – p.9/31 Inverse Compton emission of secondary CRes (B = 0), π 0 -decay induced γ-ray emission: 10-6 EGRET dFγ /dE γ [XCRp γ cm−2 s−1 GeV−1 ] frag replacements Gamma-ray flux of the Perseus galaxy cluster αp = 2.1 αp = 2.3 αp = 2.5 αp = 2.7 10-7 10-8 10-9 10-10 10-11 10-12 10-13 0.001 0.010 0.100 1.000 10.000 100.000 E γ [GeV] The quest for cosmic ray protons in clusters of galaxies – p.10/31 Upper limits on XCRp using EGRET limits Cool core cluster: A85 Perseus A2199 B = 10 µG Centaurus Ophiuchus Triagulum Australis Virgo g replacements Non-cool core cluster: Coma A2256 B = 1 µG αp αp αp αp A2319 = 2.1 = 2.3 A3571 = 2.7 0 0.01 = 2.3, radio 0.10 1.00 10.00 XCRp = εCRp /εth The quest for cosmic ray protons in clusters of galaxies – p.11/31 Expected limits on XCRp using Čerenkov telescopes Sensitivity: Fγ, exp (E > Ethr ) = 10−12 γ cm−2 s−1 (Ethr /100 GeV)1−α Cool core cluster: A85 Perseus A2199 Centaurus Ophiuchus Triagulum Australis Virgo Non-cool core cluster: Coma rag replacements A2256 αp αp αp αp = 2.1 = 2.3 = 2.5 = 2.7 A2319 A3571 0 0.001 0.010 0.100 1.000 XCRp = εCRp /εth The quest for cosmic ray protons in clusters of galaxies – p.12/31 HEGRA detection of γ-rays from M 87 HEGRA − M87: TeV CoG position Image courtesy of NRAO/AUI and Owen et al. The quest for cosmic ray protons in clusters of galaxies – p.13/31 What is the origin of the M 87 γ-ray emission? processed radiation of the relativistic outflow (jet): e.g. IC up-scattering of CMB photons by CRes (jet), SSC scenario (Bai & Lee 2001) • dark matter annihilation or decay processes • (Baltz et al. 2000) • Hadronically originating γ -rays: assuming a CRp power law distribution and a model for the CRp spatial distribution → measurement of the CRp population of the ICM/ISM of M87! (Pfrommer & Enßlin 2003) The quest for cosmic ray protons in clusters of galaxies – p.14/31 Gamma-ray flux profile of M 87 (Virgo) top: HEGRA γ cm−2 kpc−2 s−1 ] fγ (r⊥ ) [10−12 XCRp 10-1 isobaric profile 10-2 10-3 10-4 10-5 10-6 10-7 0.1 1.0 10.0 100.0 1000.0 impact parameter r⊥ [h−1 70 kpc] 2 HEGRA Fγ (θbin ) [10−12 XCRp γ cm−2 s−1 ] 0.8 PSfrag replacements HEGRA data PSF: σ = 0.08◦ PSF: σ = 0.05◦ 0.6 0.4 0.2 0.0 -0.2 -0.4 0.000 modeled γ -ray surface flux profile • normalized to the HEGRA flux (> 730 GeV) within the two innermost data points bottom: • comparison of detected to simulated γ -ray flux profiles which are convolved with two different widths of the PSF • 0.010 0.020 0.030 0.040 squared impact parameter θ2 [deg] 0.050 The quest for cosmic ray protons in clusters of galaxies – p.15/31 Radio (mini-)halos: Coma and Perseus Coma radio halo, ν = 1.4 GHz, largest emission diameter ∼ 3 Mpc Perseus mini-halo, ν = 1.4 GHz, largest emission size ∼ 0.5 Mpc (Credit: Deiss/Effelsberg) (Credit: Pedlar/VLA) The quest for cosmic ray protons in clusters of galaxies – p.16/31 Minimum energy criterion (MEC): the idea • εNT = εB + εCRp + εCRe ¯ ¯ ∂ε NT → minimum energy criterion: ∂ε ¯ B • • ! jν =0 classical MEC: εCRp = kp εCRe −(αν +1)/2 hadronic MEC: εCRp ∝ (εB + εCMB ) εB ε NT defining tolerance levels: deviation from minimum by one e-fold εB εB min The quest for cosmic ray protons in clusters of galaxies – p.17/31 Classical minimum energy criterion εCRp XCRp (r) = ε (r), th XB (r) = εεB (r) th Coma cluster: classical minimum energy criterion Perseus cluster: classical minimum energy criterion 0.0100 XCRemin XBmin XCRemin XBmin PSfrag replacements XBmin (r), XCRemin (r) XBmin (r), XCRemin (r) 0.0100 0.0010 0.0001 0.0010 PSfrag replacements 0.0001 10 100 r [h−1 70 1000 kpc] 1 10 r [h−1 70 BComa (0) = 1.1+0.7 −0.4 µG 100 kpc] BPerseus (0) = 7.2+4.5 −2.8 µG The quest for cosmic ray protons in clusters of galaxies – p.18/31 Hadronic minimum energy criterion εCRp XCRp (r) = ε (r), th XB (r) = εεB (r) th Coma cluster: hadronic minimum energy condition Perseus cluster: hadronic minimum energy condition 0.100 0.100 PSfrag replacements XCRpmin XBmin XBmin (r), XCRpmin (r) XBmin (r), XCRpmin (r) XCRpmin XBmin 0.010 0.001 PSfrag replacements 1 10 100 r [h−1 70 1000 kpc] 0.010 0.001 1 10 r [h−1 70 BComa (0) = 2.4+1.7 −1.0 µG 100 kpc] BPerseus (0) = 8.8+13.8 −5.4 µG The quest for cosmic ray protons in clusters of galaxies – p.19/31 Cosmic rays in GADGET A galactic outflow seen at high redshift. Left: the projected gas density around some of the first star forming galaxies. Right: generated bubbles of hot gas, as seen in the temperature map (Springel & Hernquist 2002). Cosmic ray GADGET - Collaboration: Enßlin, Jubelgas, Pfrommer, Springel The quest for cosmic ray protons in clusters of galaxies – p.20/31 Philosophy and description Our model describes the CR physics by two adiabatic invariants! • CRs are coupled to the thermal gas by magnetic fields. • We assume a single power-law CR spectrum: momentum cutoff q, normalization C, spectral index α (constant). → determines CR energy density and pressure In adiabatic processes, q and C scale only with the density. Non-adiabatic processes are mapped into changes of the adiabatic constants q0 and C0 . The quest for cosmic ray protons in clusters of galaxies – p.21/31 Cosmic rays in GADGET – flowchart The quest for cosmic ray protons in clusters of galaxies – p.22/31 Shock waves in galaxy clusters 1E 0657-56 (“Bullet cluster”) Abell 3667 (NASA/SAO/CXC/M.Markevitch et al.) (Radio: Australia Telescope Comp. Array. X-ray: ROSAT/PSPC.) The quest for cosmic ray protons in clusters of galaxies – p.23/31 Shock tube: thermodynamics 1.2 300 0.8 Velocity Density 1.0 0.6 0.4 200 100 0.2 0.0 0 0 100 200 300 400 500 8•104 100 200 300 400 500 0 100 200 300 400 500 10 Mach number 6•104 Pressure 0 4•104 2•104 0 1 0 100 200 300 400 500 The quest for cosmic ray protons in clusters of galaxies – p.24/31 Shock tube: statistics duth dt d log M 1•108 8•107 6•107 4•107 2•107 0 1 10 100 10 100 log M 1.5•108 duth dt 1.0•108 ag replacements 5.0•107 0 1 log M The quest for cosmic ray protons in clusters of galaxies – p.25/31 1.2 500 1.0 400 0.8 Velocity Density Shock tube (CRs & th. gas): thermodynamics 0.6 0.4 300 200 0.2 100 0.0 0 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 2.5•105 10 Mach number Pressure 2.0•105 1.5•105 1.0•105 5.0•104 0 1 0 100 200 300 400 500 The quest for cosmic ray protons in clusters of galaxies – p.26/31 7•108 duth dt d log M 6•108 5•108 4•108 3•108 2•108 1•108 0 1 10 100 10 100 log M 1•109 8•108 duth dt 6•108 4•108 ag replacements Shock tube (CRs & th. gas): statistics 2•108 0 1 log M The quest for cosmic ray protons in clusters of galaxies – p.27/31 Cosmological simulation 1011 2 # z = 8.1 z = 7.5 z = 6.6 z = 5.6 z = 4.5 z = 3.4 z = 2.4 z = 1.5 z = 0.9 z = 0.4 z = 0.0 dEth 1010 M h−2 Gyr−1 km s dt d log M 1010 109 " 108 107 106 rag replacements 105 1 10 100 1000 10000 log M The quest for cosmic ray protons in clusters of galaxies – p.28/31 Cosmic ray effects on cluster physics 100.000 Test case: resimulation of a cosmologically evolving galaxy cluster with thermal gas, star formation (cooling processes and SN feedback) and CRs (shock injection) Pressure 10.000 1.000 0.100 0.010 NoCR Shock 0.001 1 10 100 Radius [kpc] 1000 10000 Results: • the composite gas (CRs & thermal gas) is easier compressible and thus leads to stronger radiative cooling processes 1.0 0.8 • clusters with shock-injected CRs show stronger matter concentration in central regions at z=0 • in dense regions, CRs represent an important pressure component (because thermal gas cools down with high efficiency) 0.6 0.4 0.2 0.0 10-4 10-2 100 102 104 106 The quest for cosmic ray protons in clusters of galaxies – p.29/31 Cosmic ray effects on galaxy evolution Stellar mass as a function of time: M* [ MO• ] 1010 108 Test case: simulation of a collapse of isolated gas spheres inside NFW dark matter profiles. Results: 106 • global star formation efficiency 104 0 1 2 t [ Gyr ] 3 4 105 NoCR Shock dM / dt [ MO• yr-1 ] 10 4 is strongly dependent on the total halo mass: faint galaxies are strongly suppressed 103 • galaxy evolution in the hierarchi- 102 101 100 10-1 0 5 10 15 20 25 cal Universe: star formation rate effectively suppressed at early times (galaxy cluster simulation) redshift The quest for cosmic ray protons in clusters of galaxies – p.30/31 Conclusions A.) Cosmic rays in nearby clusters of galaxies: 1.) limits on CRps from γ-rays (EGRET): ε XCRp = εCRp < 20% th 2.) M 87 γ-ray emission is consistent with hadronic scenario 3.) radio mini-halos (Perseus) seem to be of hadronic origin B.) Cosmic rays in the simulation code GADGET 1.) huge potential and predictive power of cosmological simulations → provides detailed γ-ray emission maps 2.) galaxy evolution: influence on energetic feedback, star formation, and galactic winds 3.) additional entropy floor at the cluster centers (cooling flow problem) The quest for cosmic ray protons in clusters of galaxies – p.31/31
© Copyright 2026 Paperzz