Lecture 3: Crystal Optics Homogeneous, Anisotropic Media Outline Introduction material equations for homogeneous anisotropic media 1 2 3 4 5 ~ = E ~ D ~ = µH ~ B Homogeneous, Anisotropic Media Crystals Plane Waves in Anisotropic Media Wave Propagation in Uniaxial Media Reflection and Transmission at Interfaces Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics tensors of rank 2, written as 3 by 3 matrices : dielectric tensor µ: magnetic permeability tensor examples: crystals, liquid crystals external electric, magnetic fields acting on isotropic materials (glass, fluids, gas) anisotropic mechanical forces acting on isotropic materials 1 Properties of Dielectric Tensor Lecture 3: Crystal Optics 2 Lecture 3: Crystal Optics 4 Uniaxial Materials Maxwell equations imply symmetric dielectric tensor 11 12 13 = T = 12 22 23 13 23 33 isotropic materials: nx = ny = nz for any coordinate system anisotropic materials: nx 6= ny 6= nz uniaxial materials: nx = ny 6= nz symmetric tensor of rank 2 ⇒ coordinate system exists where tensor is diagonal ordinary index of refraction: no = nx = ny orthogonal axes of this coordinate system: principal axes extraordinary index of refraction: ne = nz elements of diagonal tensor: principal dielectric constants 3 principal indices of refraction in coordinate system spanned by principal axes 2 nx 0 0 ~ = 0 n2 0 E ~ D y 2 0 0 nz rotation of coordinate system around z does not change anything most materials used in polarimetry are (almost) uniaxial x, y , z because principal axes form Cartesian coordinate system Christoph U. Keller, Utrecht University, [email protected] Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 3 Christoph U. Keller, Utrecht University, [email protected] Crystals Plane Waves in Anisotropic Media Crystal Axes Terminology Displacement and Electric Field Vectors optic axis is the axis that has a different index of refraction ~ E, ~ H ~ plane-wave ansatz for D, also called c or crystallographic axis ~ =E ~ 0 ei (~k ·~x −ωt ) E ~ =D ~ 0 ei (~k ·~x −ωt ) D ~ =H ~ 0 ei (~k ·~x −ωt ) H fast axis: axis with smallest index of refraction ray of light going through uniaxial crystal is (generally) split into two rays ordinary ray (o-ray) passes the crystal without any deviation ~ = 0) no net charges in medium (∇ · D extraordinary ray (e-ray) is deviated at air-crystal interface two emerging rays have orthogonal polarization states ~ · ~k = 0 D common to use indices of refraction for ordinary ray (no ) and extraordinary ray (ne ) instead of indices of refraction in crystal coordinate system ~ perpendicular to ~k D ~ and E ~ not parallel ⇒ E ~ not perpendicular to ~k D ne < no : negative uniaxial crystal wave normal, energy flow not in same direction, same speed ne > no : positive uniaxial crystal Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 5 Christoph U. Keller, Utrecht University, [email protected] 6 ~ and E ~ Relation between D combine Maxwell, material equations in principal coordinate system ~ i = n2 E ~ i − si E ~ · ~s i = 1···3 µDi = µi E Magnetic Field constant, scalar µ, vanishing current ~ kB ~ density ⇒ H ~ =0⇒H ~ ⊥ ~k ∇·H ~ = 1 ∂ D~ ⇒ H ~ ⊥D ~ ∇×H ~s = ~k /|~k |: unit vector in direction of wave vector ~k n: refractive index associated with direction ~s, i.e. n = n(~s) ~i 3 equations for 3 unknowns E c ∂t ~ = − µ ∂ H~ ⇒ H ~ ⊥E ~ ∇×E c ∂t ~ E, ~ and ~k all in one plane D, ~ B ~ perpendicular to that plane H, ~ assuming E ~ 6= ~0 ⇒ Fresnel equation eliminate E ~ = cE ~ ×H ~ Poynting vector S 4π ~ (in ~ and H ~ ⇒S perpendicular to E general) not parallel to ~k sy2 sz2 1 sx2 + + = 2 , 2 2 2 n − µx n − µy n − µz n with ni2 = µi energy (in general) not transported in direction of wave vector ~k Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 2 2 sx n x Lecture 3: Crystal Optics 7 “ ”“ ” “ ”“ ” “ ”“ ” 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n − ny n − nz + sy ny n − nx n − nz + sz nz n − nx n − ny = 0 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 8 Electric Field in Anisotropic Material Non-Absorbing, Non-Active, Anisotropic Materials with arbitrary constant a, electric field vector given by ~ = a E sx n2 −nx2 sy n2 −ny2 sz n2 −nz2 ~k not parallel to a principal axis ⇒ ratio of 2 electric field components k and l sk n2 − µl Ek = El sl n2 − µk quadratic equation in n ⇒ generally two solutions for given direction ~s ratio is independent of electric field components electric field can also be written as in non-absorbing, non-active, anisotropic material, 2 waves propagate that have different linear polarization states and different directions of energy flows ~ corresponding to 2 solutions are direction of vibration of D ~k = E ~ · ~s n2~sk E n2 and i real ⇒ ratios are real ⇒ electric field is linearly polarized n2 − µk orthogonal to each other (without proof) system of 3 equations can be solved for Ek denominator vanishes if ~k parallel to a principal axis ⇒ treat ~1 · D ~2 = 0 D separately Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 9 Wave Propagation in Uniaxial Media z = ne2 θ: angle between wave vector and optic axis φ: azimuth angle in plane perpendicular to optic axis second form of Fresnel equation reduces to i h n2 − no2 no2 sx2 + sy2 n2 − ne2 + sz2 ne2 n2 − no2 = 0 1 n22 two solutions n1 , n2 given by Christoph U. Keller, Utrecht University, [email protected] = n2 (θ) = n12 = no2 sx2 + sy2 ne2 10 (unit) wave vector direction in spherical coordinates sx sin θ cos φ ~s = sy = sin θ sin φ sz cos θ x = y = no2 = Lecture 3: Crystal Optics Propagation in General Direction Introduction uniaxial media ⇒ dielectric constants: 1 n22 Christoph U. Keller, Utrecht University, [email protected] + sz2 no2 Lecture 3: Crystal Optics cos2 θ sin2 θ + no2 ne2 no ne q no2 sin2 θ + ne2 cos2 θ take positive root, negative value corresponds to waves propagating in opposite direction 11 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 12 Ordinary Beam ordinary beam speed independent of wave vector direction ~ i − si E ~ · ~s , i = 1 · · · 3 to hold for any ~ i = n2 E for µDi = µi E Ordinary and Extraordinary Rays from before 1 n22 = n2 (θ) = ~ o · ~s = 0 and Eo,z = 0 direction ~s, E cos2 θ sin2 θ + no2 ne2 no ne q no2 sin2 θ + ne2 cos2 θ electric field vector of ordinary beam (with real constant ao 6= 0) sin φ ~ o = ao − cos φ E 0 n2 varies between no for θ = 0 and ne for θ = 90◦ first solution propagates according to ordinary index of refraction, independent of direction ⇒ ordinary beam or ray ordinary beam is linearly polarized ~ o perpendicular to plane formed by E wave vector ~k and c-axis second solution corresponds to extraordinary beam or ray index of refraction of extraordinary beam is (in general) not the extraordinary index of refraction Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics ~ o = no E ~o k E ~o displacement vector D ~ o k ~k Poynting vector S 13 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 14 Dispersion Angle Extraordinary Ray ~ = angle between E ~ and D ~ angle between ~k and Poynting vector S = dispersion angle ~ ~ e Ee × D ne2 − no2 (ne2 − no2 ) tan θ sin 2θ tan α = = 2 = ~e · D ~e 2 no2 sin2 θ + ne2 cos2 θ ne + no2 tan2 θ E ~ e · ~k = 0 and D ~e · D ~ o = 0 ⇒ unique solution (up to real since D constant ae ) cos θ cos φ ~ e = ae cos θ sin φ D − sin θ equivalent expression ~e since Ee · Do = 0, De = E 2 ne cos θ cos φ ~ e = a n2 cos θ sin φ E e −no2 sin θ α = θ − arctan no2 tan θ ne2 for given ~k in principal axis system, α fully determines direction of energy propagation in uniaxial medium ~o · E ~e = 0 uniaxial medium ⇒ E ~ e · ~k 6= 0 however, E for θ approaching π/2, α = 0 for θ = 0, α = 0 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 15 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 16 Propagation Direction of Extraordinary Beam ~ and optic axis angle θ0 between Poynting vector S tan θ0 = Propagation Along c Axis no2 tan θ ne2 plane wave propagating along c-axis ⇒ θ = 0 ordinary and extraordinary beams propagate at same speed c no electric field vectors are perpendicular to c-axis and only depend on azimuth φ ordinary and extraordinary wave do (in general) not travel at the same speed ordinary and extraordinary rays are indistinguishable phase difference in radians between the two waves given by uniaxial medium behaves like an isotropic medium ω (n2 (θ)de − no do ) c example: “c-cut” sapphire windows do,e : geometrical distances traveled by ordinary and extraordinary rays Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 17 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 18 Propagation Perpendicular to c Axis plane wave propagating perpendicular to c-axis ⇒ θ = π/2 sin φ ~ o = − cos φ E 0 Phase Delay between Ordinary and Extraordinary Rays ordinary and extraordinary wave propagate in same direction ordinary ray propagates with speed extraordinary beam propagates at different speed c ne ~ o, E ~ e perpendicular to each other ⇒ plane wave with arbitrary E polarization can be (coherently) decomposed into components ~ o and E ~e parallel to E ~ o perpendicular to plane formed by ~k and c-axis E electric field vector of extraordinary wave 0 ~e = 0 E 1 2 components will travel at different speeds (coherently) superposing 2 components after distance d ⇒ phase difference between 2 components ωc (ne − no )d radians phase difference ⇒ change in polarization state ~ e parallel to c-axis E basis for constructing linear retarders direction of energy propagation of extraordinary wave parallel to ~k ~e k D ~e since E Christoph U. Keller, Utrecht University, [email protected] c no Lecture 3: Crystal Optics 19 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 20 Reflection and Transmission at Uniaxial Interfaces Summary: Wave Propagation in Uniaxial Media ordinary ray propagates like in an isotropic medium with index no General case from isotropic medium (nI ) into uniaxial medium (no , ne ) θI : angle between surface normal and ~kI for incoming beam extraordinary ray sees direction-dependent index of refraction no ne n2 (θ) = q no2 sin2 θ + ne2 cos2 θ n2 no ne θ θ1,2 : angles between surface normal and wave vectors of (refracted) ordinary wave ~k1 and extraordinary wave ~k2 phase matching at interface requires direction-dependent index of refraction of the extraordinary ray ordinary index of refraction extraordinary index of refraction angle between extraordinary wave vector and optic axis ~kI · ~x = ~k1 · ~x = ~k2 · ~x ~x : position vector of a point on interface surface extraordinary ray is not parallel to its wave vector angle between the two is dispersion angle tan α = nI sin θI = n1 sin θ1 = n2 sin θ2 (ne2 − no2 ) tan θ ne2 + no2 tan2 θ Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics n1 = no : index of refraction of ordinary wave n2 : index of refraction of extraordinary wave 21 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 22 Extraordinary Ray Refraction for General Case Ordinary and Extraordinary Rays s cx cy ordinary wave ⇒ Snell’s law sin θ1 = “ no2 − ne2 ± no cot θ2 = nI sin θI n1 sin2 θI “ ”“ ” − no2 − ne2 − no2 cx2 + cy2 ” propagation vector of extraordinary ray Sx = Sy = Sz = nI sin θI = n2 (θ(θ2 )) sin θ2 (in general) θ2 and therefore ~k2 will not determine direction of extraordinary beam since Poynting vector (in general) not parallel to wave vector ` ´ sin α sin θ2 cx sin θ2 − cy cos θ2 q ` ´ cz2 + cx sin θ2 − cy cos θ2 2 ` ´ sin α cos θ2 cx sin θ2 − cy cos θ2 cos α sin θ2 − q ` ´ cz2 + cx sin θ2 − cy cos θ2 2 cos α cos θ2 + cz ∗ q sin α ` ´ cz2 + cx sin θ2 − cy cos θ2 2 ~c optic axis vector ~c = (cx , cy , cz )T ~ propagation direction of extraordinary ray S ~ = (Sx , Sy , Sz )T S θI angle between ~kI and interface normal θ2 angle between ~ke and interface normal α dispersion angle solve for θ2 ⇒ determine direction of Poynting vector special cases reduce complexity of equations Lecture 3: Crystal Optics “ ” 2 n2 +n2 c 2 n2 −n2 no e e x e o “ no2 + cx2 ne2 − no2 law for extraordinary ray not trivial Christoph U. Keller, Utrecht University, [email protected] ” 23 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 24 Normal Incidence Optic Axis in Plane of Incidence and Plane of Interface θ + θ2 = π/2 ⇒ cot θ2 = ne no cot θ1 θ1 : angle between surface normal and ordinary ray or wave vector (sin θI = no sin θ1 ) extraordinary wave sees equivalent refractive index s ne2 2 2 ny = ne + sin θI 1 − 2 no direction of Poynting vector normal incidence ⇒ θI = 0, θ1 = θ2 = 0 choose plane formed by surface normal and crystal axis Sx = cos(θ2 + α) both wave vectors and ordinary ray not refracted Sy = sin(θ2 + α) extraordinary ray refracted by dispersion angle α 2 no α = θ − arctan tan θ ne2 Sz = 0 Christoph U. Keller, Utrecht University, [email protected] determine dispersion angle α and add to θ2 to obtain direction of extraordinary ray Lecture 3: Crystal Optics 25 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 26 Interface from Uniaxial Medium to Isotropic Medium ordinary ray follows Snell’s law transmitted extraordinary wave vector and ray coincide Optic Axis Perpendicular to Plane of Incidence c-axis perpendicular to plane of incidence ⇒ θ = π2 , n2 π 2 exit of extraordinary wave on interface defined by extraordinary ray = ne extraordinary wave vector follows Snell’s law with index n2 (θ) nI sin θI = ne sin θ2 nI sin θE = n2 sin θU extraordinary wave vector obeys Snell’s law with index ne θ= π 2 ⇒ dispersion angle α = 0 nI index of isotropic medium θE angle of wave/ray vector with surface normal in isotropic medium n2 , θU corresponding values for extraordinary wave vector in uniaxial medium Poynting vector k wave vector, extraordinary beam itself obeys Snell’s law with ne double refraction only for non-normal incidence n2 is function of θ normally already known from beam propagation in uniaxial medium θU is function of geometry of interface, plane-parallel slab of uniaxial medium, θE = θI , (in general) extraordinary beam displaced on exit Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 27 Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 28 Total Internal Reflection (TIR) TIR also in anisotropic media no 6= ne ⇒ one beam may be totally reflected while other is transmitted principal of most crystal polarizers example: calcite prism, normal incidence, optic axis parallel to first interface, exit face inclined by 40◦ 40° no, ne ⇒ extraordinary ray not refracted, two rays propagate according to indices no ,ne at second interface rays (and wave vectors) at 40◦ to surface 40° c 632.8 nm: no = 1.6558, ne = 1.4852 requirement for total reflection nU nI e o sin θU > 1 with nI = 1 ⇒ extraordinary ray transmitted, ordinary ray undergoes TIR Christoph U. Keller, Utrecht University, [email protected] Lecture 3: Crystal Optics 29
© Copyright 2026 Paperzz