AS Maths Start of Year Test – 70% pass mark – MOCK – NON CALCULATOR 54 marks 1 hour Q1. Simplify .............................................................................................................................................. (Total for Question is 3 marks) Q2. Simplify completely .............................................................................................................................................. (Total for Question is 3 marks) Q3. Simplify fully ........................................................... (Total for question = 3 marks) Q4. (a) Solve 2x + 3 = x – 4 x=.................. (2) (b) Solve 4(x – 5) = 14 x=.................. (2) (Total for Question is 4 marks) Q5. –2 < n ≤ 3 (a) Represent this inequality on the number line. (2) (b) Solve the inequality 8x – 3 ≥ 6x + 4 .............................................................................................................................................. (2) (Total for Question is 4 marks) Q6. The point A has coordinates (2, 3). The point B has coordinates (6, 8). M is the midpoint of the line AB. Find the coordinates of M. Diagram NOT accurately drawn ........................................................... (Total for Question is 2 marks) Q7. The diagram shows a straight line, L1, drawn on a grid. A straight line, L2, is parallel to the straight line L1 and passes through the point (0, −5). Find an equation of the straight line L2. ........................................................... (Total for Question is 3 marks) Q8. * A is the point with coordinates (1, 3) B is the point with coordinates (4, −1) The straight line L goes through both A and B. Is the line with equation 2y = 3x − 4 perpendicular to line L? You must show how you got your answer. (Total for Question is 4 marks) Q9. The straight line L has equation y = 2x − 5 Find an equation of the straight line perpendicular to L which passes through (−2, 3). ........................................................... (Total for Question is 3 marks) Q10. (a) Find the value of 5° .............................................................................................................................................. (1) (b) Find the value of 27 1⁄3 .............................................................................................................................................. (1) (c) Find the value of -3 2 .............................................................................................................................................. (1) (Total for Question is 3 marks) Q11. (a) Rationalise the denominator of .............................................................................................................................................. (2) (b) Expand and simplify .............................................................................................................................................. (2) (Total for Question is 4 marks) Q12. (a) Simplify 54 × 56 ........................................................... (1) (b) Simplify 75 ÷ 72 ........................................................... (1) (Total for Question is 2 marks) Q13. (a) Write down the value of 271⁄3 .............................................................................................................................................. (1) -½ (b) Find the value of 25 .............................................................................................................................................. (2) (Total for Question is 3 marks) Q14. Solve the simultaneous equations 5x + 2y = 11 4x – 3y = 18 x=...................... y=...................... (Total for Question is 4 marks) Q15. The graph of y = f(x) is shown on each of the grids. (a) On this grid, sketch the graph of y = f(x – 3) (2) (b) On this grid, sketch the graph of y = 2f(x) (2) (Total for Question is 4 marks) Q16. The diagram shows part of a sketch of the curve y = sin x°. (a) Write down the coordinates of the point P. (.............................. , ..............................) (1) (b) Write down the coordinates of the point Q. (.............................. , ..............................) (1) Here is a sketch of the curve y = a cos bx° + c, 0 ≤ x ≤ 360 (c) Find the values of a, b and c. a =........................................................... b =........................................................... c =........................................................... (3) (Total for Question is 5 marks) Mark Scheme Q1. Q2. Q3. Q4. Q5. Q6. Q7. Q8. Q9. Q10. Q11. Q12. Q13. Q14. Q15. Q16.
© Copyright 2024 Paperzz