Finding the GCF and the LCM

East Campus, CB 117
361-698-1579
Math Learning Center
Finding the GCF and the LCM
West Campus, HS1 203
361-698-1860
GREATEST COMMON FACTOR
Definition: Greatest Common Factor (GCF) – the largest number/expression that divides into two or more
numbers or expressions evenly (no remainder).
For example: for the numbers 𝟏𝟏𝟏𝟏 and 𝟐𝟐𝟐𝟐
πŸ‘πŸ‘ is a common factor but πŸ—πŸ— is the greatest common factor, since πŸ—πŸ— is the largest number that divides into 𝟏𝟏𝟏𝟏
and 𝟐𝟐𝟐𝟐 evenly.
Finding the Greatest Common Factor: one approach to finding the GCF is looking at the prime factors that
occur the least (look for the smallest exponent) in each of the numbers or expressions that are involved. For
instance, in the example using 𝟏𝟏𝟏𝟏 and 𝟐𝟐𝟐𝟐, factor each number into its prime factors.
𝟏𝟏𝟏𝟏
πŸ‘πŸ‘ β€’ πŸ”πŸ”
πŸ‘πŸ‘ β€’ πŸ‘πŸ‘ β€’ 𝟐𝟐
πŸ‘πŸ‘πŸπŸ β€’ 𝟐𝟐𝟏𝟏
𝟐𝟐𝟐𝟐
πŸ‘πŸ‘ β€’ πŸ—πŸ—
πŸ‘πŸ‘ β€’ πŸ‘πŸ‘ β€’ πŸ‘πŸ‘
πŸ‘πŸ‘πŸ‘πŸ‘
The least exponent on the πŸ‘πŸ‘ is two and on the 𝟐𝟐 it is zero (since 27 doesn’t have any factors of 2) so the GCF is
πŸ‘πŸ‘πŸπŸ = πŸ—πŸ—
Another example of finding the Greatest Common Factor of πŸ—πŸ—πŸ—πŸ— and 𝟏𝟏𝟏𝟏𝟏𝟏:
πŸ—πŸ—πŸ—πŸ—
𝟏𝟏𝟏𝟏𝟏𝟏
𝟐𝟐 β€’ πŸ‘πŸ‘ β€’ πŸ‘πŸ‘ β€’ πŸ“πŸ“
𝟐𝟐 β€’ 𝟐𝟐 β€’ 𝟐𝟐 β€’ πŸ‘πŸ‘ β€’ πŸ“πŸ“
𝟐𝟐𝟏𝟏 β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ
πŸπŸπŸ‘πŸ‘ β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ
The least exponent of each factor is one so the GCF is 𝟐𝟐𝟏𝟏 β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ = πŸ‘πŸ‘πŸ‘πŸ‘
Examples in Finding the Greatest Common Factor of Algebraic Expressions:
The same approach is used to find the GCF of algebraic expressions – factor into prime factors first.
Example: find the GCF of
πŸπŸπŸπŸπ’™π’™πŸπŸ π’šπ’šπŸ‘πŸ‘ π’˜π’˜
𝟐𝟐𝟐𝟐 βˆ™ πŸ‘πŸ‘πŸπŸ βˆ™ π’™π’™πŸπŸ βˆ™ π’šπ’šπŸ‘πŸ‘ βˆ™ π’˜π’˜πŸπŸ
and
Choose the least exponent of each factor
πŸπŸπŸπŸπŸπŸπ’šπ’šπŸπŸ
𝟐𝟐𝟐𝟐 βˆ™ πŸ“πŸ“πŸπŸ βˆ™ π’™π’™πŸπŸ βˆ™ π’šπ’šπŸπŸ
The GCF is 𝟐𝟐𝟐𝟐 β€’ π’™π’™πŸπŸ β€’ π’šπ’šπŸπŸ = πŸ’πŸ’πŸ’πŸ’π’šπ’šπŸπŸ (3, 5, and w are not included because they didn’t occur in both expressions)
Example: find the GCF of
πŸ‘πŸ‘π’™π’™πŸ‘πŸ‘ + πŸ”πŸ”π’™π’™πŸπŸ
πŸ‘πŸ‘π’™π’™πŸπŸ (𝒙𝒙 + 𝟐𝟐)
πŸ‘πŸ‘π’™π’™πŸπŸ (𝒙𝒙 + 𝟐𝟐)
πŸ‘πŸ‘πŸπŸ β€’ π’™π’™πŸπŸ β€’ (𝒙𝒙 + 𝟐𝟐)𝟏𝟏
The GCF is πŸ‘πŸ‘πŸπŸ (𝒙𝒙 + 𝟐𝟐)𝟏𝟏 = πŸ‘πŸ‘(𝒙𝒙 + 𝟐𝟐)
and
πŸ”πŸ”π’™π’™πŸπŸ βˆ’ 𝟐𝟐𝟐𝟐
πŸ”πŸ”(π’™π’™πŸπŸ βˆ’ πŸ’πŸ’)
𝟐𝟐 β€’ πŸ‘πŸ‘(𝒙𝒙 βˆ’ 𝟐𝟐)(𝒙𝒙 + 𝟐𝟐)
𝟐𝟐𝟏𝟏 β€’ πŸ‘πŸ‘πŸπŸ β€’ (𝒙𝒙 βˆ’ 𝟐𝟐)𝟏𝟏 β€’ (𝒙𝒙 + 𝟐𝟐)𝟏𝟏
East Campus, CB 117
361-698-1579
Math Learning Center
West Campus, HS1 203
361-698-1860
LEAST COMMON MULTIPLE
Definition: Least Common Multiple (LCM) – the smallest number/expression that two or more numbers or
expressions divide into evenly.
For example: for the numbers 6 and 9, 54 is a common multiple but 18 is the least common multiple, since 18
is the smallest number 6 and 9 divides into evenly.
Finding the Least Common Multiple: one approach to finding the LCM is looking at the prime factors that
occur the most (look for the largest exponent) in each of the numbers or expressions that are involved. For
instance, in the example using 6 and 9, factor each number into its prime factors.
πŸ”πŸ”
πŸ—πŸ—
πŸ‘πŸ‘ β€’ 𝟐𝟐
πŸ‘πŸ‘ β€’ πŸ‘πŸ‘
πŸ‘πŸ‘πŸπŸ β€’ 𝟐𝟐𝟏𝟏
πŸ‘πŸ‘πŸπŸ
The largest exponent on the 3 is two and on the 2 it is one so the LCD is 32 β€’ 21 = 18
Another example of finding the Least Common Multiple of 90 and 120:
πŸ—πŸ—πŸ—πŸ—
𝟏𝟏𝟏𝟏𝟏𝟏
𝟐𝟐 β€’ πŸ‘πŸ‘ β€’ πŸ‘πŸ‘ β€’ πŸ“πŸ“
𝟐𝟐 β€’ 𝟐𝟐 β€’ 𝟐𝟐 β€’ πŸ‘πŸ‘ β€’ πŸ“πŸ“
𝟐𝟐𝟏𝟏 β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ
πŸπŸπŸ‘πŸ‘ β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ
Pick the largest exponent on each factor to get the LCM which is πŸπŸπŸ‘πŸ‘ β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ = πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
Examples in Finding the Least Common Multiples of Algebraic Expressions:
The same approach is used to find the LCD (Least Common Denominator) of algebraic expressions – factor the
denominator in to prime factors first.
Example: find the LCD of
πŸπŸπŸπŸπ’™π’™πŸπŸ π’šπ’šπŸ‘πŸ‘ π’˜π’˜
𝟐𝟐𝟐𝟐 βˆ™πŸ‘πŸ‘πŸπŸ βˆ™π’™π’™πŸπŸ βˆ™π’šπ’šπŸ‘πŸ‘ βˆ™π’˜π’˜πŸπŸ
and
πŸπŸπŸπŸπŸπŸπ’šπ’šπŸπŸ
𝟐𝟐𝟐𝟐 βˆ™πŸ“πŸ“πŸπŸ βˆ™π’™π’™πŸπŸ βˆ™π’šπ’šπŸπŸ
Use the largest exponent of each denominator factor, so the LCD is 𝟐𝟐𝟐𝟐 β€’ πŸ‘πŸ‘πŸπŸ β€’ πŸ“πŸ“πŸπŸ β€’ π’™π’™πŸπŸ β€’ π’šπ’šπŸ‘πŸ‘ β€’ π’˜π’˜πŸπŸ = πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸπŸπ’šπ’šπŸ‘πŸ‘π’˜π’˜
Example: find the LCM
πŸ‘πŸ‘π’™π’™πŸ‘πŸ‘ + πŸ”πŸ”π’™π’™πŸπŸ
πŸ‘πŸ‘π’™π’™πŸπŸ (𝒙𝒙 + 𝟐𝟐)
πŸ‘πŸ‘π’™π’™πŸπŸ (𝒙𝒙 + 𝟐𝟐)
πŸ‘πŸ‘πŸπŸ β€’ π’™π’™πŸπŸ β€’ (𝒙𝒙 + 𝟐𝟐)𝟏𝟏
and
πŸ”πŸ”π’™π’™πŸπŸ βˆ’ 𝟐𝟐𝟐𝟐
πŸ”πŸ”(π’™π’™πŸπŸ βˆ’ πŸ’πŸ’)
𝟐𝟐 β€’ πŸ‘πŸ‘(𝒙𝒙 βˆ’ 𝟐𝟐)(𝒙𝒙 + 𝟐𝟐)
𝟐𝟐𝟏𝟏 β€’ πŸ‘πŸ‘πŸπŸ β€’ (𝒙𝒙 βˆ’ 𝟐𝟐)𝟏𝟏 β€’ (𝒙𝒙 + 𝟐𝟐)𝟏𝟏
The LCM is 𝟐𝟐𝟏𝟏 β€’ πŸ‘πŸ‘πŸπŸ β€’ π’™π’™πŸπŸ β€’ (𝒙𝒙 βˆ’ 𝟐𝟐)𝟏𝟏 β€’ (𝒙𝒙 + 𝟐𝟐)𝟏𝟏 = πŸ”πŸ”π’™π’™πŸπŸ (𝒙𝒙 βˆ’ 𝟐𝟐)(𝒙𝒙 + 𝟐𝟐)