CHAPTER ONE FUNDAMENTAL CONCEPTS OF ALGEBRA Introduction In this chapter, we will work with numbers. Therefore we need to know about this number and understand its properties. After being introduced to the number systems, we can look at the operation of the numbers such as exponents, surd and logarithm. Algebra is about operations and the order of applying these operations in solving problems in quadratic equations and partial fractions. Objectives After completing these tutorials, students should be able to: Express each of the given numbers as a quotient a . b Write each of the given inequalities in interval notation and show them on the real number line. Simplify the given index expressions. Solve the following index equations. Express in terms of the simplest possible surds. Rationalize the denominator and simplify. Express in logarithm form. Express in index form. Simplify the given logarithm expressions. Solve the given logarithm equations. 2 Question 1 Express each of the numbers as a quotient (a) 1.666666666…… Solution: Let x = 1.6666… 10 x = 16.66… Equation (2)-(1) 9x =15 15 x 9 5 x 3 a b (1) (2) (b) 2.718181818…… Solution: Let x = 2.71818… (1) 10 x = 27.1818… (2) 1000 x = 2718.18.. (3) Equation (3)-(2) 990x = 2691 2691 x 990 299 x 110 Question 2 Write each of the following inequalities in interval notation and show them on the real number line. (a) 2 x6 Solution: 2 (b) 6 3 x 7 Solution: -3 7 3 (c) 2 x 0 Solution: -2 (d) 0 3 x 2 Solution: -3 (e) 2 3 x Solution: 3 (f) x 1 Solution: -1 Question 3 Show each of the following intervals on the real number line. (a) [2,3] Solution: -2 (b) 3 (4,4) Solution: -4 4 4 (c) (,5] Solution: 5 (d) [1, ) Solution: -1 (e) (2, 3) (0, 6) Solution: -2 (f) 6 [6, 2) (3, 7) Solution: -3 2 Question 4 Evaluate (a) 1 2 2 Solution: 2 1 2 2 1 22 4 2 5 (b) 27 1 3 Solution: 27 (c) 1 3 1 1 3 27 3 1 3 1 27 1 16 2 49 Solution: 1 16 16 2 49 49 4 7 1 (d) (2.56) 2 Solution: ( 2.56) 1 2 1 64 2 25 1 25 2 64 25 64 5 8 6 (e) 31 22 40 Solution: 1 31 22 40 .4.1 3 4 3 (f) 1 1 92 82 2 1 2 Solution: 1 2 9 8 2 1 2 1 2 1 2 2 3 . 2 2 1 3 2 3 .2 1 2 3 2 1 22 3.2 3 1 2 2 3( 2) 6 Question 5 Simplify the following expressions: (a) 3n 2 9n 27n Solution: 3n 2 9n 27 n 3n 2 32 n 33n 3n 2 2 n 3n 32 9 7 (b) 2 n 3 4 8 16 n 1 n 4 Solution: 2 n 1 4n 8 3 16 4 n 2 n 3 1 n 4 4 2 2 2 n 23 22 n 2 n n 2n Question 6 Solve the following equations: (a) 9 x 27 Solution: 9 x 27 32 x 33 2x 3 3 x 2 (b) 2 x 1 1 64 Solution: 1 2 x 1 64 1 2 x 1 6 2 x 1 2 2 6 x 1 6 x 7 8 (c) 4 x 2 1281 x Solution: 4 x 2 1281 x 2 2 x2 27 1 x 22( x 2 ) 27 (1 x ) 2x 4 7 7x 9x 3 x (d) 2 5 1 3 1 16 Solution: 2 1 x 5 16 x 2 1 5 1 x 24 2 x 4 2 5 2 lg x 5 20 lg 2 lg x 2 lg x 10 lg 2 4 lg 2 lg x lg 210 x 210 x 1024 (e) 7 x 496 2 x 0 2 Solution: 2 7 x 496 2 x 0 7 x 496 2 x 2 7 x 72 2 6 2 x x 2 12 4 x x 2 4 x 12 0 ( x 2)( x 6) 0 x 2, 6 9 (f) (4 x ) x 4 8 x Solution: (4 x )x 4 8x ( 2 2 x ) x 2 2 23 x 22 x 223 x 2 2 x 2 3x 2 0 ( 2 x 1)( x 2) 0 1 x ,2 2 Question 7 Express in terms of the simplest possible surds: (a) 50 Solution: 50 25 2 25 2 5 2 (b) 200 Solution: 200 100 2 100 2 10 2 Question 8 Simplify (a) 2 (3 2 2 ) Solution: 2 (3 2 2 ) 3 2 4 10 (b) ( 3 2)( 3 1) Solution: ( 3 2)( 3 1) 33 3 2 53 3 (c) (3 3 2)(3 3 2) Solution: (3 3 2)(3 3 2) 27 6 3 6 3 4 23 Question 9 Rationalize the denominator and simplify (a) 2 32 Solution: 2 32 (b) 2 2 32 32 32 16 32 32 32 5 2 5 Solution: 5 2 5 5 2 5 2 5 2 5 10 5 5 1 10 5 5 11 (c) 2 2 3 3 Solution: 2 2 3 3 2 2 3 3 2 3 3 2 3 3 64 3 12 9 64 3 3 4 2 3 3 1 1 2 1 2 1 (d) Solution: 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 Question 10 Express in logarithm form (a) 53 125 Solution: 53 125 lg 5 125 3 12 (b) 1331 (121) 3 2 Solution: 3 1331 (121) 2 3 lg121 1331 2 (c) e y 33 Solution: e y 33 ln 33 y Question 11 Express in index form (a) log 3 27 3 Solution: log 3 27 3 27 33 (b) log x y 2 Solution: log x y 2 y x2 (c) ln b 3 Solution: ln b 3 b e 3 13 Question 12 Evaluate (a) 1 log 9 9 2 Solution: 1 log 9 9 2 1 log 9 9 2 1 2 (b) log 1 4 2 Solution: log 1 4 2 1 log 1 4 2 1 2 1 log 1 2 2 1 2 log 1 2 2 2 Question 13 Express in terms of log a, log b and log c (a) log abc Solution: log abc log a log b log c 14 (b) log a b 2c Solution: a log 2 bc log a log b 2 log c log a 2 log b log c (c) log a b Solution: a log b 1 a 2 log b 1 a log 2 b 1 1 log a log b 2 2 (d) a3 ln b Solution: a3 ln b ln a 3 ln b 3 ln a ln b 15 Question 14 Simplify (a) 3 ln( x 7) ln x Solution: 3 ln( x 7) ln x ln( x 7)3 ln x ( x 7)3 ln x (b) log 2 log 6 log 4 Solution: log 2 log 6 log 4 (c) 2 6 log 4 log 3 1 log 25 2 log 3 2 log 6 2 Solution: 1 log 25 2 log 3 2 log 6 2 1 log 25 2 log 32 log 62 log 5 log 9 log 36 5 36 log 9 log 20 (d) log 9 log 3 Solution: log 9 log 3 log 32 log 3 2 log 3 log 3 2 16 Question 15 Solve each equation (a) log 4 ( x 2 9) log 4 ( x 3) 3 Solution: log 4 ( x 2 9) log 4 ( x 3) 3 x2 9 log 4 3 log 4 4 x3 x2 9 3 log 4 log 4 4 x3 x2 9 43 x3 x 2 9 64( x 3) x 2 64 x 201 0 ( x 67 )( x 3) 0 x 67, 3 (b) log 2 ( x 2 1) log 4 x 2 1 Solution: log 2 ( x 2 1) log 4 x 2 1 log 2 ( x 2 1) log 2 x 2 1 log 2 4 log 2 x 2 1 2 2 log 2 ( x 2 1) log 2 x 2 2 log 2 ( x 2 1) ( x 2 1)2 log 2 2 2 x 2 2 ( x 1) 4 x2 ( x 2 1)2 4 x 2 x4 2x2 1 4x2 x4 2x2 1 0 ( x 2 1)( x 2 1) 0 x 1, 1
© Copyright 2026 Paperzz