Table of Contents Georgia Performance Standards Strand 1 Number and Operations Lesson 1 Factors and Multiples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 M5N1.b Lesson 2 Classifying Numbers: Prime and Composite Numbers. . . . . . 10 M5N1.a, M5P3.b, M5P3.d Lesson 3 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 M5N1.c, M5P2.b, M5P2.c Lesson 4 Understanding Decimals and Place Value . . . . . . . . . . . . . . . 18 M5N2.a, Lesson 5 Multiplying and Dividing Decimals Lesson 6 Lesson 7 Lesson 8 M5P5.a M5N2.b, M5N3.a, M5N3.b, by a Whole Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 M5P2.c, M5P2.d Multiplying Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 M5N3.a, M5N3.b, M5N3.c, M5N3.d Dividing Decimals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 M5N3.a, M5N3.b, M5N3.c, M5N3.d M5N4.b, M5N4.c Simplifying Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 M5P5.a, M5P5.b Equivalent Fractions and Lesson 9 Fractions as Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Lesson 10 Modeling Multiplying And Dividing Fractions . . . . . . . . . . . . . 42 M5N4.d, M5P5.a M5P5.b, M5P5.c Lesson 11 M5N4.a, M5P2.d, M5P5.a Greatest Common Factor (GCF) and Least Common Multiple (LCM). . . . . . . . . . . . . . . . . . . . . . . . 46 M5N4.e Lesson 12 Finding Common Denominators . . . . . . . . . . . . . . . . . . . . . . 50 Lesson 13 Comparing Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 M5N4.f Lesson 14 Adding and Subtracting Fractions M5N4.e, M5P4.a, M5P4.b with Unlike Denominators . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 M5N4.g Lesson 15 Fraction-Decimal Equivalences . . . . . . . . . . . . . . . . . . . . . . . 62 M5N4.h Lesson 16 Fractions: Estimating Products and Quotients . . . . . . . . . . . . 66 M5N4.i, M5P2.b Lesson 17 Modeling and Applying Percents . . . . . . . . . . . . . . . . . . . . . . 70 M5N5.a, M5N5.b M5P1.b, M5P1.d 4 145GA_Mth_G5_SE_FM_Conf_.indd 4 7/19/07 11:04:09 AM Georgia Performance Standards Strand 2 Measurement Lesson 18 Estimating Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 M5M1.a, M5P1.a, M5P1.c Lesson 19 Finding the Area of Parallelograms M5M1.b, M5M1.c, M5P2.a, and Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 M5P4.a, M5P4.b Lesson 20 Area of Triangles and Parallelograms . . . . . . . . . . . . . . . . . . . 82 M5M1.d, M5P1.b, M5P2.a Lesson 21 Area of Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 M5M1.e, M5P1.a, M5P2.b, M5P2.d, Lesson 22 Area of Composite Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Lesson 23 Measuring Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 M5M3.a, Lesson 24 Introduction to Volume of Prisms . . . . . . . . . . . . . . . . . . . . . . 98 M5P3.a M5M1.f, M5P1.a, M5P1.d M5M3.b M5M4.a, M5M4.b, M5M4.c, M5M4.f, M5P3.a, M5P3.d Lesson 25 Volume of Rectangular Prisms and Cubes . . . . . . . . . . . . . 102 M5M4.d, M5P1.b, M5M4.e, M5P4.c Strand 3 Geometry Lesson 26 Congruent Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 M5G1, M5P2.c, Lesson 27 Circumference, Diameter, and Pi . . . . . . . . . . . . . . . . . . . . . 110 M5G2, M5P2.b, M5P2.d M5P2.b, M5P2.d, M5P4.a Representing Unknown Quantities. . . . . . . . . . . . . . . . . . . . 114 M5A1.a, M5P3.c, M5P5.a, M5P5.b Strand 4 Algebra Lesson 28 Lesson 29 Evaluating Algebraic Expressions. . . . . . . . . . . . . . . . . . . . . 118 M5A1.b, M5A1.c, M5P3.c, M5P5.a, M5P5.b Strand 5 Data Analysis Lesson 30 Analyzing Data from Graphs . . . . . . . . . . . . . . . . . . . . . . . . 122 M5D1.a, M5P5.a, M5P5.b, Lesson 31 Comparing and Contrasting Graphic Representations . . . . 126 M5P5.c M5D1.b, M5D2, M5P5.a, M5P5.b, M5P5.c Math Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5 145GA_Mth_G5_SE_FM_Conf_.indd 5 7/19/07 11:04:10 AM Number and Operations LESSON 1 2EVIEW)T Factors and Multiples When you work with factors and multiples, remember these words: product the result of multiplication factor when two whole numbers are multiplied, each is a factor of the product multiple the product of a whole number and a counting number (1, 2, 3, 4, ...) 32 is a multiple of 8. 2 and 4 are factors of 8. Find the fi rst five multiples of 12 and all factors of 12. Step 1 Multiply to find multiples. 12 1 12 12 2 24 12 3 12 4 12 5 Step 2 REMEMBER Multiply 12 by 1, by 2, by 3, ... Start with 1 to find factors. 1 12 12 1 and 12 are factors. 2 6 12 2 and 6 are factors. 3 4 12 3 and 4 are factors. 12 has factors in all. So, the fi rst five multiples of 12 are of 12 are . and the factors 6 145GA_Mth_G5_SE_Less 01-09_Conf_6 6 7/19/07 11:15:18 AM 4RY)T 1. 5 Find the first 6 multiples of each number. !SK 9OURSELF 2. 9 1. What number do you multiply by first? 0, 1, or 2? 3. 11 4. 8 5. 16 6. 15 7. 25 8. 100 Number and Operations Lesson 1: Factors and Multiples Find the factors of each number. 9. 10 10. 13 11. 15 12. 18 13. 24 14. 60 15. 21 16. 36 9. Which is a factor of 10? 2, 3, or 4? Solve. 17. 18. Ellie works at a camp. Her age is a multiple of 6 and a multiple of 8. What is the youngest age Ellie could be? 17. Which is a multiple of 6? 3 or 12? Felo is thinking of a number between 50 and 60. One of its factors is 9. What is Felo’s number? 7 145GA_Mth_G5_SE_Less 01-09_Conf_7 7 7/19/07 11:15:21 AM Number and Operations /N9OUR/WN 1. 2. 3. 4. Circle the best answer for each question. Which is a multiple of 4? 5. Which list shows all of the factors of 20? A. 2 B. 10 A. 1, 2, 4, 5, 20 C. 14 B. 1, 2, 4, 5, 10, 20 D. 20 C. 1, 2, 4, 5, 6, 10, 20 D. 1, 2, 4, 5, 6, 8, 10, 20 Which is a factor of 80? A. 9 6. B. 15 C. 20 Jeff is thinking of a number less than 100. It is a multiple of 10 and a multiple of 20. What is the greatest number Jeff could be thinking of? D. 25 A. 90 B. 80 C. 60 D. 30 Which is NOT a factor of 16? A. 2 B. 4 C. 6 D. 8 Which is NOT a multiple of 14? A. 32 B. 56 C. 70 D. 98 7. Ariana baked apple turnovers. She can divide the turnovers into equal groups of 3 or equal groups of 4. Which of these could be the number of turnovers Ariana baked? A. 7 B. 16 C. 30 D. 36 8 145GA_Mth_G5_SE_Less 01-09_Conf_8 8 7/19/07 11:15:25 AM 8. Part A. Write the factors of 22. Part B. Use the numbers from Part A to write a sentence that includes the word “multiple.” -ATH 7ORDS Number and Operations Lesson 1: Factors and Multiples Fill in the blanks. 9. Since 6 7 42, 42 is a of 6. 10. Since 6 7 42, 6 is a of 42. 11. When two numbers are multiplied, the result is called the . 9 145GA_Mth_G5_SE_Less 01-09_Conf_9 9 7/19/07 11:15:26 AM Number and Operations Classifying Numbers: Prime and Composite Numbers LESSON 2 2EVIEW)T When you classify numbers, remember these words: prime number a number with exactly two factors, 1 and itself composite number a number with more than two factors 3 is a prime number. 4 is a composite number. Which of the following numbers is prime? 24, 27, 29, 49 Step 1 List the factors of each number. REMEMBER A factor divides a number evenly without a remainder. 24: 1, 2, 3, 4, 6, 8, 12, 24 27: 1, 3, 9, 27 29: 1, 29 49: 1, 7, 49 Step 2 Count the number of factors. 24 has 8 factors. 27 has 4 factors. 29 has factors. 49 has factors. So, is the prime number. 10 145GA_Mth_G5_SE_Less 01-09_Conf_10 10 7/19/07 11:15:27 AM 4RY)T 1. 28 Write prime or composite for each number. 2. 5 3. 31 4. 17 5. 33 6. 9 7. 23 8. 12 9. 100 10. 16 11. 81 12. 103 13. 125 14. 32 15. 63 16. 61 17. 50 18. 93 19. 83 20. 19 21. 55 !SK 9OURSELF Number and Operations Lesson 2: Classifying Numbers 1. Is one of these a factor of 28? 2, 3, or 5? 4. How many factors does a prime number have? 0, 1, or 2? Solve. 22. 23. The number of 5th-grade students in Saskia’s school is a prime number greater than 50. What is the smallest number of 5th-grade students there could be? 22. Is one of these a factor of 51? 2, 3, 5, or 7? Aaron visited India last year. The number of days he spent there is the largest two-digit prime number. How many days did Aaron spend in India last year? 11 145GA_Mth_G5_SE_Less 01-09_Conf_11 11 7/19/07 11:15:28 AM
© Copyright 2026 Paperzz