Unit 1: Review Measurement Lab Resources To help you better understand conversions, visit: http://www.swtc.edu:8082/mscenter/mthsci/science/1tools/p02amtrc.pps http://www.dmacc.org/medmath1/METRIC/metric.html Note: this tutorial uses “mc” for micro (10 mcg) but we will use “µ” for micro (10µg). Continue Continue I. Metric units II. Conversions The fundamental unit for length is the meter (m), for mass is the kilogram (kg), for volume is the liter (l) and for temperature is degree Kelvin (°K) but Celsius (°C) is more commonly used. The line below may help you with metric conversions. Prefixes precede the root or main word (gram, liter, meter). The following prefixes are commonly used in science: Tera (T) = 1012 Giga (G) = 109 Mega (M) = 106 Kilo (k) = 103 Hecto (h) = 102 Deka (da) = 101 deci (d) = 10-1 centi (c) = 10-2 milli (m) = 10-3 micro (µ) = 10-6 nano (n) = 10-9 pico (p) = 10-12 T . . G . . M . . k h da Base d c m . . µ . . n . . p The base represents gram, liter and meter. First find on the line your given then count the number of spaces you need to move to get to your answer. For example, if you have 15 kg and you want to convert to mg then you must move 6 spaces to the right. So you move your decimal point 6 spaces to the right. Your answer is then 15,000,000 mg. Continue Continue III. Length measurements Laboratory equipment for measuring length. • This ruler has both English units (top) and Metric units (bottom). Length measurements continued Decimeter (dm), centimeter (cm) and meter (m) units. English measurements 1 dm = 10 cm = 100 mm Metric measurements Continue Continue 1 millimeter (mm) 1 Length measurements continued Length measurements continued Meter = m Area measurement The formula for area = length x width. Area units are always squared (m2, cm2, km2 ). 1 m = 10 dm = 100 cm = 1000 mm Continue Continue IV. Volume Volume continued When a figure has three dimensions we can find its volume. Volume can be expressed in terms of liters or cubic centimeters (cm3 or cc). Larger volumes can be expressed as m3 and dm3. • Laboratory equipment for measuring volume pipettes: pipette pump or filling device is used to draw and dispense fluids Pipette filling device Note: 1 liter = 1000 ml 1 dm3 = 1000 cm3 The liquid in one liter will fit in a dm3 so; 1 liter = 1 dm3 This means that 1 cc = 1 ml. 5 ml Pipette To record volume you must read the bottom of the meniscus. The meniscus is the curved interface between the water and air. This is due to the surface tension and adhesive forces of water as it interacts with its container. 1 ml pipette with filling device Continue Continue Volume continued Volume continued Pipettes of different sizes Laboratory equipment for measuring volume 1 ml in 1/10 5 ml in 1/10 • Graduated cylinders • Erlenmeyer flasks • Beakers Graduated cylinders 10 ml in 1/10 The 1 ml pipette can dispense as little as 1/10 ml. The 5 ml pipette can dispense as little as 1/10 ml. The 10 ml pipette can dispense as little as 1/10 ml. Continue Continue Erlenmeyer flasks Beaker 2 V. Mass Mass is a measurement of the amount of matter in an object. It is determined by the molecular structure of the object. Weight is a measure of the gravitational pull on an object. It is not the same as mass. Mass continued Laboratory equipment for measuring mass • Triple beam balance • Electronic scale For pure water only 1 cc = 1 ml = 1 g pounds Triple beam balance kilograms Bathroom scale with both lbs. and kg units. Continue Continue VI. Temperature The Celsius scale is used to measure temperature in the metric system. Conversions can be done between degrees Celsius and degrees Fahrenheit. Electronic scale Temperature continued Laboratory equipment for measuring temperature • thermometer Use caution when handling hot items. Always use appropriate heat resistant gloves when working with heat sources or hot items. °F = 1.8°C + 32 °C = (°F – 32)/1.8 Other variations of these formulas are found in your lab manual. 23 °C Continue Continue Thermometers VII. Graphing Data Line graphs have both X axis and Y axis. Each X and Y axis is subdivided into uniform intervals. Usually, the independent variable (manipulated) is plotted along the X axis and the dependent variable (measured) is plotted along the Y axis. VIII. Scientific Notation Scientific notation uses powers of 10 so very large or small numbers can be expressed concisely. The number we use as the base for this system is 10. The exponent is the power of the number and is applied to the base. For example, if the exponents were 0, 3, and -3, when applied to the base of 10 you have: 100 = 1 103 = 1,000 10-3 = 1/1,000 or 0.001 Y axis Every time you increase the exponent by 1, you are multiplying by 10. If you decrease the power by 1, you are dividing by 10. For example 123,000 is 1.23 x 105. Check your answer. Since 105 = 100,000 then ….1.23 x 10,0000 = 123,000. Another example is 0.000123 is 1.23 x 10-4. Since 10-4 = 0.0001 then… 1.23 x .0001 = 0.000123. X axis Continue End of Lab Review ☺ 3
© Copyright 2026 Paperzz