Properties of ethanol and ethanol-water solutions – Tables and Equations Eigenschaften von Ethanol und Ethanol-Wasser-Lösungen – Tabellen und Gleichungen Pavel Kadlec, Svatopluk Henke, Zdeněk Bubník This paper deals with the physico-chemical properties of ethanol and ethanol-water solutions. The data of ethanol properties and its water solutions, which were obtained from literature, are presented in the form of Equations and Tables.Extended properties include data for pure ethanol (density, vapor pressure, surface tension, viscosity, molar and specific heat capacity, enthalpy of evaporation, thermal conductivity and static relative permittivity) and tabled data for ethanol-water solutions (0–100% ethanol) as well: concentrative properties, surface tension and thermal conductivity at 20 °C, density, viscosity, boiling point and equilibrium liquid-vapor at normal pressure. Key words: ethanol, ethanol-water solution, physico-chemical properties 1 Introduction Data of physico-chemical properties of ethanol are important for chemical engineering calculations, modeling and the evaluation of the ethanol production process and use of ethanol for food and nonfood applications. Properties of ethanol are presented in the form of Tables as well as by formulas. One of the most important goals of this paper is to develop algorithms for calculation of the extended properties of ethanol collected from the literature. Extended properties include data for pure ethanol (density, vapor pressure, surface tension, viscosity, molar and specific heat capacity, enthalpy of evaporation, thermal conductivity and static relative permittivity) and tabulated data for ethanol-water solutions (0–100% ethanol) as well: concentrative properties, surface tension and thermal conductivity at 20 °C, density, viscosity, boiling point and equilibrium liquid–vapor at normal pressure. 2 Properties of pure ethanol The data for properties of pure ethanol from various authors are together collected in Table 1 including the numerical reference to the source. Temperature dependences of chosen properties of pure ethanol for the temperature range from –20 to 80 °C for commonly used chemical engineering calculations are summarized in Table 2. The Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 Der Beitrag befasst sich mit den physikalisch-chemischen Eigenschaften von Ethanol und Ethanol-Wasser-Lösungen. Die Daten von Ethanol und der Ethanol-Wasser-Lösungen, die der Literatur entnommen wurden, werden in Form von Gleichungen und Tabellen dargestellt. Enthalten sind für reines Ethanol Daten von Dichte, Dampfdruck, Oberflächenspannung, Viskosität, molare und spezifische Wärmekapazität, Verdampfungsenthalpie, Wärmeleitfähigkeit und statische Dielektrizitätszahl und für Ethanol-WasserLösungen (0–100 % Ethanol) Konzentrationseigenschaften, Oberflächenspannung und thermische Leitfähigkeit bei 20 ° C, Dichte, Viskosität, Siedepunkt und Dampf-Flüssigkeit-Gleichgewicht bei Normaldruck. Stichwörter: Ethanol, Ethanol-Wasser-Lösungen, physikalischchemische Eigenschaften algorithms for calculations of these properties are shown in the following subchapters. 2.1 Density ρ of ethanol in g/cm3 for the temperature range from –114 to 207 °C Eq. (1) for the temperature dependence of density of pure ethanol in the range from –114 to 207 °C was presented by Cibulka [14]. In his work other saturated 1-alkanols from C1 to C10 and n-alkanes from C5 to C16 are also critically evaluated. ρ = 1000 7 ∑ i =0 T Ai 1 − Tc i /3 (1) 2.2 Vapor pressure p0 of ethanol in kPa for the temperature range from –3 to 96 °C according to the Antoine equation The presented eq. (2) for vapor pressure of ethanol dependence on temperature can be found in Reid [6]. It is the temperature dependence of vapor pressure according to the Antoine equation (known since 1887) in the range between –3 to 96 °C. In Reid [6] it is possible to find other more complex vapor pressure equations. ln p0 = A − B T +C (2) 607 Table 1: Properties of ethanol Property Symbol Unit Numerical value Chemical properties Molecular formula Molar mass C2H6O M g/mol 46.068 Critical constants Normal boiling point Critical temperature Critical pressure Critical molar volume Critical density Critical compressibility factor Acentric factor tb tc pc Vc ρc Zc Ω °C °C MPa cm3/mol g/cm3 1 1 Physical properties Melting point tm °C Freezing point tf °C tf °C Ebullioscopic constant Eb (K · kg)/mol Van der Waals constants for gas a (Pa · m6)/mol2 b m3/mol Density ρ kg/m3 Vapor pressure p kPa Dependence of boiling point on pressure ∆tb/∆p K/kPa Isothermal compressibility κ 1/kPa Cubic thermal expansion α 1/K Surface tension σ mN/m Viscosity η mPa · s Flash point tfp °C cFL mL/L Flammable limits (explosive limits) Autoignition temperature tAu °C Adiabatic flame temperature in air t °C Threshold limit for allowable airborne concentration cTLV g/L Dissociation constant of pure ethanol to dilute to aqueous solution pKa Permanent dipole moment µ C/m Permittivity (dielectric constant) ε 1 Refractive index nD 1 Reference 78.29 at 101.325 kPa 240.75 6.137 168 0.276 0.248 0.637 [1] [1] [1] [1] [2] [2] [2] –114.1 –114.1 at 0.1 MPa –108 at 100 MPa 1.23 1.256 8.71 · 10–5 789.24 at 20 °C 5.87 at 20 °C 0.249 111.9 0.0014 22.8 at 20 °C 1.195 at 20 °C 13 3.3–190 363 1965 [1] [3] [4] [5] [6] [6] [5] [7] [7] [7] [7] [8] [5] [5] [5] [5] [9] 0.998 859 at 25 °C, 101.325 kPa [6] 15.5 at 25 °C [10] 1.69 [5] 25.45 at 20 °C [11] 1.361 6 at 589 nm, 20 °C [5] Thermo-physical properties Standard molar enthalpy of formation – pure liquid ethanol ∆Ho kJ/mol –277.6 at 25 °C – pure gaseous ethanol ∆Ho kJ/mol –234.8 at 25 °C Standard molar Gibbs energy of formation – pure liquid ethanol ∆Go kJ/mol –174.8 at 25 °C – pure gaseous ethanol ∆Go kJ/mol –167.9 at 25 °C Molar heat capacity – pure liquid ethanol Cp J/(mol · K) 112.3 at 25 °C – pure gaseous ethanol Cp J/(mol · K) 65.6 at 25 °C Specific heat capacity cp J/(kg · K) 2 437.08 at 25 °C Molar enthalpy of fusion Hfus kJ/mol 4.931 at –114.1 °C Specific enthalpy of fusion hfus kJ/kg 107.035 at –114.1 °C Molar evaporation enthalpy hm,Ev kJ/mol 38.56 at 78,29 °C hm,Ev kJ/mol 42.40 at 25 °C Specific evaporation enthalpy hs,Ev kJ/kg 836.88 at 78,29 °C hs,Ev kJ/kg 920.40 at 25 °C Molar enthalpy of combustion ∆Hcb kJ/mol 1,235.5 at 25 °C Specific enthalpy of combustion ∆hcb kJ/kg 26,818.5 at 25 °C Molar entropy Sm J/(mol · K) 282.59 at 25 °C Entropy of gas formation Sm J/(mol · K) –223.143 at 25 °C Thermal conductivity λ W/(m · K) 0.167 89 at 25 °C Energy value (Physiological calorific value) kJ/g 30 2.3 Surface tension σ of ethanol in mN/m for the temperature range from –114.1 to 243.1 °C Eq. (3) for the temperature dependence of surface tension of ethanol is taken from Yaws [16] and is valid from –114.1 to 243.1 °C. The relation for dependence is known as the Othmer equation [17]. n t2 − t σ = σ 1 t2 − t1 608 [5] [5] [5] [5] [5] [5] [6] [5] [5] [5] [5] [5] [5] [2] [2] [2] [2] [12] [13] 2.4 Dynamic viscosity η of ethanol in mPa · s for the temperature range –50 to 100 °C Eq. (4) is from the book of Perry [18]. ln η = A + BT −1 + CT + DT 2 (4) (3) Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 Table 2: Physical properties of pure ethanol – temperature dependences of density, vapor pressure, surface tension, dynamic viscosity, static relative permittivity, molar heat capacity, specific heat capacity, molar evaporation enthalpy, specific evaporation enthalpy, thermal conductivity, thermal conductivity of ethanol vapor, Prandtl number and Reynolds number, in the temperature range from –20 to 80 °C Ref. [14] [6, 15] [2, 5, 16] [6, 18] [11, 19] [20] [20] Temp. Density Vapor Surface Dynamic Static Molar Specific pressure tension viscosity relative heat heat capacity [21] [21] [15] Molar Specific Thermal evapor- evapor- conduct- ation ation ivity enthalpy enthalpy [15, 22] Prandtl Thermal conductivity number for ethanol vapor t ρ p0 σ η εr Cp cp hm,Ev hs,Ev λ λ Pr °C kg/m3 kPa mN/m mPa · s 1 J/(mol · K) J/(kg · K) kJ/mol kJ/kg W/(m · K) W/(m · K) 1 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 823.15 818.92 814.69 810.46 806.23 802.00 797.76 793.51 789.24 784.96 780.64 776.29 771.91 767.48 763.00 758.47 753.87 749.20 744.45 739.61 734.68 0.34 0.51 0.76 1.11 1.59 2.25 3.14 4.32 5.87 7.88 10.47 13.76 17.89 23.05 29.44 37.27 46.80 58.32 72.15 88.65 108.19 26.34 25.90 25.46 25.02 24.58 24.14 23.69 23.25 22.80 22.35 21.90 21.45 21.00 20.55 20.09 19.63 19.18 18.72 18.26 17.79 17.33 Table 3: Constants for density (Cibulka [14]) A0 A1 A2 A3 A4 A5 A6 A7 Tc 0.276 –0.2739686 10.49591 –49.98835 123.0696 –162.4311 108.7218 –28.7993 513.88 Table 4: Constants for vapor pressure (Reid [6]) Constant A B C Value 1.68969 · 101 3.80398 · 103 –4.16800 · 101 2.830 2.510 2.235 1.997 1.792 1.612 1.455 1.317 1.195 1.087 0.992 0.906 0.830 0.761 0.700 0.644 0.594 0.548 0.507 0.469 0.434 31.41 30.54 29.71 28.91 28.16 27.43 26.74 26.08 25.45 24.85 24.28 23.74 23.22 22.73 22.26 21.82 21.39 20.99 20.60 20.24 19.89 98.37 99.58 100.86 102.23 103.68 105.22 106.85 108.57 110.38 112.28 114.27 116.36 118.54 120.82 123.20 125.67 128.24 130.91 133.67 136.52 139.46 2135.34 2161.47 2189.36 2219.04 2250.57 2283.98 2319.30 2356.57 2395.82 2437.08 2480.37 2525.72 2573.13 2622.63 2674.21 2727.88 2783.64 2841.47 2901.36 2963.28 3027.20 Table 6: Constants for dynamic viscosity (Perry [18]) Constant A B C D Value –7.10566 1.67513 · 103 1.03679 · 10–2 –1.71008 · 10–5 Table 7: Constants for static relative permittivity (Lide [19]) Constant A B C D 1.51450 · 102 –8.70200 · 10–1 1.95700 · 10–3 –1.55120 · 10–6 Table 5: Constants for surface tension (Yaws [16]) Constant Value Units Constant 22.8 20.0 243.1 0.8760 mN/m °C °C 1 R Tc A1 A2 A3 A4 A5 A6 Mm 972.76 967.61 962.31 956.84 951.21 945.41 939.43 933.28 926.93 920.40 913.66 906.72 899.57 892.20 884.60 876.76 868.68 860.35 851.75 842.87 833.71 0.17971 0.17836 0.17701 0.17567 0.17435 0.17303 0.17173 0.17044 0.16916 0.16789 0.16663 0.16538 0.16415 0.16292 0.16171 0.16050 0.15931 0.15813 0.15696 0.15580 0.15465 0.00969 0.01016 0.01063 0.01111 0.01159 0.01207 0.01256 0.01305 0.01355 0.01404 0.01455 0.01505 0.01556 0.01608 0.01660 0.01712 0.01764 0.01817 0.01870 0.01924 0.01978 33.6 30.4 27.6 25.2 23.1 21.3 19.7 18.2 16.9 15.8 14.8 13.8 13.0 12.3 11.6 10.9 10.4 9.85 9.37 8.92 8.51 0.5 Re 1 1.0 Re 1 1.5 Re 1 14,544 16,315 18,227 20,288 22,501 24,875 27,414 30,126 33,016 36,093 39,363 42,834 46,514 50,411 54,533 58,891 63,492 68,348 73,468 78,863 84,543 29,089 32,630 36,455 40,575 45,003 49,749 54,828 60,251 66,033 72,186 78,726 85,668 93,028 100,821 109,067 117,782 126,985 136,696 146,936 157,725 169,086 43,633 48,945 54,682 60,863 67,504 74,624 82,242 90,377 99,049 108,279 118,089 128,502 139,542 151,232 163,600 176,672 190,477 205,044 220,404 236,588 253,629 2.5 Static relative permittivity (dielectric constant) εr of ethanol for the temperature range from –110 to 250 °C Eq. (5) is presented in the Handbook of Lide [5, 19]. The original data can be found in the article by Wohlfahrt [11]. ε r = A + BT + CT 2 + DT 3 (5) 2.6 Molar and specific heat capacity (Cp, cp) of ethanol in J/(mol · K) and J/(kg · K) for the temperature range from –114 to 105 °C Eqs. (6) and (7) are taken from Zábranský [20]. Value Table 8: Constants for molar and specific heat capacity (Zábranský [20]) σ1 t1 t2 n 44.81 44.58 44.33 44.08 43.82 43.56 43.28 43.00 42.70 42.40 42.09 41.77 41.44 41.10 40.75 40.39 40.02 39.64 39.24 38.83 38.41 Reynolds number for velocity of flow v in m/s Value 8.314 513.92 15.4028 0.359101 9.35649 25.7454 –41.4812 80.3298 0.04607 Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 T T = A1 ln 1 − + A2 1 − R Tc Tc Cp −1 3 (6) cp = 2 T T T + A3 + A4 + A5 + A6 Tc Tc Tc Cp Mm (7) 2.7 Molar and specific evaporation enthalpy (hm,EV, hs,EV) of ethanol in kJ/mol and kJ/kg for the temperature range 25 to 196 °C Eqs. (8) and (9) are according to Majer [21]. β hm,Ev T T = A 1 − exp −α T T c c (8) 609 h (9) hs,Ev = m,Ev Mm 2.8 Thermal conductivity λ of ethanol in W/(m · K) in the range –114 to 190 °C Eq. (10) for the dependence of thermal conductivity on the thermodynamical temperature is according to the book of Miller [15]. λ = A + BT + CT 2 (10) 2.9 Thermal conductivity λ of ethanol vapor in W/(m · K) in the range from 0 to 1000 °C Eq. (11) for the dependence of the thermal conductivity on the temperature is according to Miller [22]. λ = A + BT + CT 2 + DT 3 (11) Table 9: Constants for enthalpy of evaporation (Majer [21]) Constant Tc A α β Mm Value 513.9 50.43 –0.4475 0.4989 0.04607 A B C Value 2.6293 · 10–1 –3.8468 · 10–4 2.2106 · 10–7 Table 11: Constants for thermal conductivity of pure ethanol vapor (Miller [22]) Constant A B C D λ Specific heat capacity cp J/(kg · K) 104.27 105.34 106.49 107.72 109.02 110.41 111.87 113.41 115.03 116.72 118.50 120.35 122.29 124.30 126.39 128.55 130.80 133.12 135.53 138.01 140.57 2263.36 2286.58 2311.51 2338.13 2366.46 2396.49 2428.23 2461.66 2496.80 2533.64 2572.18 2612.42 2654.37 2698.02 2743.36 2790.42 2839.17 2889.62 2941.78 2995.64 3051.20 Note: Adapted according to Yaws [2]. 4 Properties of ethanol-water solutions for the concentration range from 0 to 100% Tables for ethanol-water solutions for the concentration range 0– 100% were adapted according to data from the literature. Prandtl numbers Pr of pure ethanol in Table 2 were calculated according to eq. (12) by means of the known eqs. (4) for dynamic viscosity η, (6) and (7) for specific heat capacity (cp) and (10) for thermal conductivity λ. η ⋅ cp 838.62 834.99 831.32 827.60 823.83 820.00 816.13 812.20 808.21 804.16 800.04 795.86 791.60 787.28 782.87 778.38 773.80 769.13 764.36 759.49 754.50 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Molar heat capacity Cp J/(mol · K) Value –7.79580 · 10–3 4.16600 · 10–5 1.21417 · 10–7 –5.18325 · 10–11 2.10 Prandtl number Pr of pure ethanol Pr = Temp. Density t ρ °C kg/m3 –20 Table 10: Constants for thermal conductivity of pure ethanol liquid (Miller [15]) Constant Table 12: Density, molar and specific heat capacity of 96% ethanol-water solution (12) 4.1 Densities ρ of ethanol-water solutions in kg/m3 The densities of ethanol-water solutions for the temperature range 0–80 °C were taken from and adapted according to Osborne [23], Recommendation Internationale No. 22: Alcoométrie, Tables alcoométriques internationales [24], Tables alcoométriques: Organisation Internationale de Métrologie Légale [25] and Washburn [26, 27]. The density data are shown in Table 13. 2.11 Reynolds number Re of pure ethanol for a flow-through pipe of diameter d = 100 mm Reynolds numbers Re of pure ethanol in Table 2 were calculated for a flow-through pipe of diameter d = 100 mm for three values of velocity of flow v in m/s (0.5; 1.0; 1.5) according to eq. (13) by means of the known eqs. (1) for density ρ and (4) for dynamic viscosity η. Re = v ⋅ d ⋅ρ η (13) 3 Properties of 96% ethanol-water solution Table 12 gives basic properties such as density, molar and heat capacity of 96% ethanol-water solution according to Yaws [2]. 610 Table 13: Density ρ of aqueous ethanol solutions in kg/m3 Ethanol content wE in % 0 10 20 30 40 50 60 70 80 90 100 10 15 999.70 983.90 972.49 959.74 942.35 921.59 899.24 875.99 851.94 826.52 797.76 999.10 983.01 970.65 956.83 938.79 917.73 895.20 871.84 847.69 822.25 793.51 Temperature t in °C 20 25 30 998.20 981.84 968.61 953.79 935.15 913.81 891.10 867.63 843.41 817.95 789.24 997.05 980.40 966.36 950.64 931.45 909.82 886.96 863.37 839.08 813.60 784.96 995.65 978.72 963.92 947.38 927.67 905.77 882.75 859.05 834.70 809.20 780.64 35 40 994.03 976.82 961.31 944.00 923.82 901.65 878.48 854.67 830.27 804.76 776.29 992.22 974.72 958.53 940.52 919.89 897.47 874.14 850.22 825.76 800.26 771.91 Note: Adapted according to Osborne [23], Recommendation Internationale [24], Tables alcoométriques [25], Washburn [26, 27]. Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 Table 14: Viscosity η of aqueous ethanol solutions in mPa · s EthanolTemperature t in °C content 0 10 20 30 40 wE in % 10 20 30 40 50 60 70 80 90 100 3.311 5.319 6.940 7.140 6.580 5.750 4.762 3.690 2.732 1.792 2.179 3.165 4.050 4.390 4.180 3.770 3.268 2.710 2.101 1.455 1.501 2.142 2.667 2.846 2.813 2.547 2.214 1.881 1.542 1.195 1.160 1.553 1.870 2.020 2.020 1.930 1.767 1.531 1.279 0.992 0.907 1.160 1.368 1.482 1.499 1.447 1.344 1.203 1.035 0.830 50 60 70 80 0.734 0.907 1.050 1.132 1.155 1.127 1.062 0.968 0.848 0.700 0.609 0.736 0.834 0.893 0.913 0.902 0.856 0.789 0.704 0.594 0.514 0.608 0.683 0.727 0.740 0.729 0.695 0.650 0.589 0.507 0.430 0.505 0.567 0.601 0.612 0.604 0.434 Note: Adapted according to Reid [6], Perry [18], Dykyj [28], Dyr [29]. Table 15: Surface tensions and thermal conductivities of aqueous ethanol at 20 °C Reference Ethanol content wE % 0 10 20 30 40 50 60 70 80 90 100 [30] Surface tension σ mN/m [15] Thermal conductivity λ W/(m · K) 72.01 47.53 37.97 32.98 30.16 27.96 26.23 25.10 23.82 22.72 22.80 – 0.461 0.416 0.374 0.335 0.295 0.263 0.230 0.205 0.180 0.169 Note: Adapted according to Miller [15], Vazquez [30]. 4.2 Dynamic viscosity η of ethanolwater solutions in mPa · s The dynamic viscosities of ethanol-water solutions for the temperature range 0–80 °C were adapted according to Reid [6], Perry [18], Dykyj [28] and Dyr [29] and are shown in Table 14. 4.3 Surface tension and thermal conductivity of ethanol-water solutions at 20 °C Table 16: Concentrative properties of aqueous ethanol solutions at 20 °C Reference [31, 32] [5] [5] [5] Ethanol Ethanol Molality Molarity Density content content wE vb b c ρ % % (v/v) mol/kg mol/L kg/m3 0 0.00 0.000 1 1.26 0.219 3 3.76 0.671 5 6.24 1.142 7 8.71 1.634 9 11.16 2.147 11 13.61 2.683 13 16.04 3.243 15 18.46 3.830 17 20.87 4.446 20 24.46 5.427 24 29.20 6.855 28 33.87 8.441 32 38.45 10.215 36 42.94 12.210 40 47.32 14.471 44 51.60 17.055 48 55.77 20.036 52 59.85 23.515 56 63.81 27.626 60 67.68 32.559 64 71.45 38.589 68 75.11 46.125 72 78.67 55.816 76 82.12 68.736 80 85.46 86.824 84 113.957 88 159.178 92 249.620 96 520.946 100 0.000 0.216 0.646 1.074 1.498 1.921 2.341 2.759 3.175 3.589 4.205 5.018 5.817 6.601 7.370 8.120 8.853 9.568 10.266 10.945 11.605 12.250 12.877 13.486 14.077 14.649 15.197 15.724 16.225 16.697 17.133 998.2 996.3 992.7 989.3 986.2 983.3 980.5 977.8 975.2 972.6 968.7 963.2 957.1 950.4 943.1 935.2 926.9 918.3 909.5 900.4 891.1 881.8 872.4 862.9 853.3 843.6 833.5 823.2 812.5 801.3 789.3 [5] Refractive index (589 mn) nD 1 [5] [5] FreezingDynamic point viscosity ∆t K 1.3330 0.00 1.3336 0.40 1.3348 1.23 1.3360 2.09 1.3374 2.99 1.3388 3.96 1.3403 5.00 1.3417 6.13 1.3432 7.36 1.3447 8.69 1.3469 10.92 1.3498 14.47 1.3524 18.43 1.3546 22.44 1.3566 25.98 1.3583 29.26 1.3598 32.68 1.3610 36.04 1.3621 39.20 1.3630 42.06 1.3638 44.93 1.3644 47.52 1.3650 49.52 1.3654 1.3657 1.3658 1.3656 1.3653 1.3646 1.3636 1.3616 η mPa · s 1.000 1.046 1.140 1.228 1.331 1.442 1.563 1.694 1.826 1.955 2.142 2.370 2.581 2.726 2.803 2.846 2.850 2.832 2.789 2.701 2.547 2.415 2.281 2.148 2.015 1.881 1.741 1.606 1.475 1.342 1.195 Note: Adapted according to Lide [5], Šťastný [31], Žáček [32]. The surface tensions and thermal conductivities of ethanol-water solutions for a temperature of 20 °C were taken from and adapted according to Miller [15], Vazquez [30] and are shown in Table 15. nm, freezing point depression ∆t (K) and dynamic viscosity η (mPa · s) are shown for ethanol content wE in % (m/m), νb in % (v/v), molality b (mol/kg) and molarity c (mol/L). These data were taken from and adapted according to Lide [5], Šťastný [31] and Žáček [32]. 4.4 Concentrative properties of ethanol water solutions at 20 °C 4.5 Boiling point tb of ethanol-water solutions in °C Table 16 shows the survey of various ways for concentrations of ethanol-water solutions at 20 °C for ethanol contents wE from 0 to 20% (m/m) with steps of 2% and for the range of 20–100% with steps of 4%. Density ρ (kg/m3), refractive index nD at 589 The boiling points tb of ethanol-water solutions for 7 values of pressure (26.66; 53.32; 79.98; 101.31; 130.76; 108.67; 138.10 kPa) were taken from and adapted according to Dykyj [28] and Dyr [29] and are shown in Table 17. Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 611 Table 17: Boiling points tb of aqueous ethanol solutions in °C Ethanol content wE in % 26.66 53.32 79.98 101.31 103.76 108.67 138.10 0 10 20 30 40 50 60 70 75 80 85 90 95 100 93.2 87.0 82.0 79.3 77.7 75.0 74.6 74.2 74.0 73.7 73.5 73.2 72.8 72.6 66.5 60.5 56.2 54.0 53.5 51.2 50.5 49.8 49.5 49.2 48.9 48.6 48.3 48.1 83.3 76.7 72.0 69.3 67.7 66.2 64.9 64.5 64.3 64.8 63.2 63.3 63.5 63.6 Pressure p in kPa 100.0 91.2 87.0 84.5 83.0 82.0 80.9 80.0 79.5 79.2 78.8 78.5 78.3 78.3 106.3 100.6 94.7 91.2 89.5 88.0 87.0 86.1 85.6 85.3 85.0 84.8 84.4 84.2 111.4 105.8 100.0 96.5 94.3 92.8 91.9 91.1 90.7 90.4 90.0 89.7 89.3 89.0 143.4 137.7 131.0 126.4 123.8 122.0 120.9 120.0 119.5 119.0 118.5 118.0 117.4 117.0 Note: Adapted according to Dykyj [28], Dyr [29]. Table 18: Equilibrium liquid-vapor of ethanol-water solutions at normal pressure Mole fraction Temper- Mass fraction of ethanol xE ature t of ethanol wE (for xE) liquid vapor liquid vapor 1 °C 1 0.00 0.01 0.03 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.97 0.99 1.00 0.0000 0.1191 0.2616 0.3425 0.4451 0.5292 0.5765 0.6167 0.6575 0.7027 0.7552 0.8186 0.8978 0.9663 0.9885 1.0000 100.0 96.8 92.5 89.8 86.1 83.1 81.6 80.6 79.7 79.0 78.5 78.2 78.1 78.2 78.3 78.3 0.00 0.01 0.03 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.97 0.99 1.00 0.0000 0.1243 0.2896 0.3940 0.5386 0.6579 0.7114 0.7448 0.7711 0.7964 0.8247 0.8609 0.9130 0.9682 0.9887 1.0000 Temper- ature t (for wE) °C 100.0 98.6 96.2 94.3 90.8 86.7 84.5 83.0 81.9 80.8 79.9 79,0 78.2 78.1 78.2 78.3 azeotrope: xE,liquid = 0.904; wE,liquid = 0.960; t(xE) = t(wE) = 78.17 °C Note: Adapted according to Holeček [33], Yaws [34]. 4.6 Equilibrium liquid-vapor of the mixture ethanol-water at normal pressure Table 18 shows equilibrium liquid-vapor of ethanol-water solutions at normal pressure, including the composition of the azeotropic mixture. These data were taken from and adapted according to Holeček [33] and Yaws [34]. 5 Discussion and conclusion The data of ethanol properties and its aqueous solutions, which have been obtained from the literature, are here presented in the form of Equations and Tables. The paper enlarges on the previous work of Henke [35], where algorithms for calculation of extended properties of pure ethanol were discussed, by reporting the properties of 96% ethanol-water solutions and ethanol-water solutions in a whole range of concentrations. In further work the authors intend to develop new formulas for calculating the properties of 96% ethanol and ethanol-water solutions as well. 612 Acknowledgements The work is supported by the research project MSM6046137305 of Ministry of Education, Youth and Sports of the Czech Republic. Symbols a Van der Waals constants for gas in (Pa · m6)/mol2 b Van der Waals constants for gas in m3/mol b Molality in mol/kg c Molarity in mol/L cFL Flammable limits (explosive limits) in mL/L Cp Molar heat capacity in J/(mol · K) cp Specific heat capacity in J/(kg · K) cTLV Threshold limit for allowable airborne concentration in g/L Eb Ebullioscopic constant in (K · kg)/mol Hfus Molar enthalpy of fusion in kJ/mol hfus Specific enthalpy of fusion in kJ/kg hm,Ev Molar evaporation enthalpy in kJ/mol hs,Ev Specific evaporation enthalpy in kJ/kg Mm Molar mass in g/mol nD Refractive index p0 Vapor pressure in kPa pc Critical pressure in MPa pKa Dissociation constant of pure ethanol to dilute to aqueous solution Pr Prandtl number Re Reynolds number Sm Molar entropy in J/(mol · K) Sm Entropy of gas formation in J/(mol · K) t Adiabatic flame temperature in air in °C t Temperature in °C T Temperature in K tAu Autoignition temperature in °C tb Normal boiling point in °C tc Critical temperature in °C Tc Critical temperature in K tf Freezing point in °C tfp Flash point in °C tm Melting point in °C Tr Reduced temperature in K v Velocity of flow in m/s vb Ethanol content (Volume fraction) in % (v/v) Vc Critical molar volume in cm3/mol wE Ethanol content (mass fraction) in % (m/m) xE Ethanol content (mole fraction) in % (n/n) Zc Critical compressibility factor α Cubic thermal expansion in 1/K ∆Go Standard molar Gibbs energy of formation pure liquid/gaseous ethanol in kJ/mol ∆Hcb Molar enthalpy of combustion in kJ/mol ∆hcb Specific enthalpy of combustion in kJ/kg ∆Ho Standard molar enthalpy of formation pure liquid/gaseous ethanol in kJ/mol ∆tb/∆p Dependence of boiling point on pressure in K/kPa ε Permittivity (dielectric constant) η Viscosity in mPa · s κ Isothermal compressibility in 1/kPa λ Thermal conductivity in W/(m · K) µ Permanent dipole moment in C/m ρ Density in kg/m3 ρc Critical density in g/cm3 σ Surface tension in mN/m Ω Acentric factor Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 References 1 Gude, M.; A.C. Teja (1995): IUPAC Part 4. J. Chem. Eng. Data 40, 1025 2 Yaws, C.L. (1999): Chemical Properties Handbook. McGraw-Hill, New York 3 Isaacs, N.S. (1981): Liquid Phase High Pressure Chemistry. John Wiley, New York 4 Merrill, L. (1977 and 1982): J. Phys. Chem. Ref. Data 6, 1205 and 11, 1005 5 Lide, D.R.; Kehiaian, H.V. (1994): CRC Handbook of Thermophysical and Thermochemical Data. CRC Press, Boca Raton 6 Reid, R.C,.; Prausnitz, J.M.; Poling B.E. (1987): The Properties of Gases and Liquids. 4th ed., McGraw-Hill, New York 7 Lide, D.R. (2006): CRC Handbook of Chemistry and Physics. 87th ed. CRC Press, LLC; (http://www.hbcpnetbase.com) 8 Jasper, J.J. (1972) : J. Phys. Chem. Ref. Data 1, 841 9 Fristrom, R.M. (1995): Flame Structures and Processes. Oxford University Press, New York 10 Albert, A.; Serjeant, E.P. (1984): The Determination of Ionization Constants. 3rd ed., Chapman and Hall, London 11 Wohlfarth, C. (1991): Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Editor in Chief, O. Madelung, Group IV, Macroscopic and Technical Properties of Matter, Volume 6, Springer-Verlag, Berlin 12 Vargaftik, N.B.; Filippov, L.P.; Tarzimanov, A.A.; Totskii, E.E. (1994): Handbook of Thermal Conductivity of Liquids and Gases. CRC Press, Boca Raton 13 Rose, J.W.; Cooper, J.R. (1977): Technical Data on Fuel. 7th ed, British National Committee, World Energy Conference, London 14 Cibulka, I. (1993): Saturated liquid densities of l-alkanols from C1 to C10 and n-alkanes from C5 to C16: critical evaluation of experimental data. Fluid Phase Equilibria 89, 1–18 15 Miller, J.W.Jr.; Yaws, C.L. (1976): Correlation constants for liquids. Chem. Eng. 83, 153 16 Yaws, C.L.; Miller, J.W.; Shah, P.N.; Schorr, G.R.; Patel, P.M. (1976): Correlation constants for liquids: heat capacities, surface tensions, densities, thermal conductivities. Chemical Engineering, McGraw-Hill, New York 17 Othmer, D.F.; Josefowitz, S.; Schmutzler; A.F. (1948): Correlating Surface Tensions of Liquids from Ind. Eng. Chem. 40, 886–889 18 Perry, R.H.; Green, D.W. (1997): Perry’s chemical engineers’ handbook. McGraw-Hill, New York 19 Lide, D.R. (2007/08): CRC Handbook of Chemistry and Physics. 88th ed. CRCnetBASE Taylor and Francis Group LLC 20 Zábranský, M.; Růžička, V.; Majer, V.; Domalski, E.S. (1996): Heat capacities of liquids. Critical review and recommended values. J. Phys. Chem. Ref. Data, Monograph No.6, American Chemical Society, Washington D.C. 21 Majer, V.; Svoboda, V. (1985): Enthalpies of Vaporization of Organic Compounds. IUPAC Chemical Data. Series No. 32, Blackwell, Oxford 22 Miller, J.W.Jr.; Shah, N.P.; Yaws, C.L. (1976): Correlation constants for chemical compounds. Chem. Eng. 83, 153 23 Osborne, N.S.; McKelvy, E.C.; Bearce, H.W. (1913): Density and thermal expansion of ethyl alcohol and its mixtures with water. Bulletin Bureau Standards 9, 327–474 24 Recommendation Internationale No. 22 (1973): Alcoométrie, Tables alcoométriques internationales. Paris 25 Tables alcoométriques (1975): Organisation Internationale de Métrologie Légale, Paris 26 Washburn, E.W. (1926–1930): International Critical Tables of Numerical Data. Physics, Chemistry and Technology. (1st Electronic Edition), Knovel, 2003 27 Washburn, E.W. (1926–1932): International Critical Tables of Numerical Data. Physics, Chemistry and Technology. Vol. 3, McGraw-Hill. New York 28 Dykyj, J. (1953): Physical-chemical tables (Fysikálně-chemické tabulky – in Czech). SNTL Praha 29 Dyr, J.; Grégr, V.; Seiler, A. (1963): Distiller’s technology II. (Lihovarství II. – in Czech). SNTL Praha 30 Vazquez, G.; Alvarez, E.; Navaza, J.M. (1995): J. Chem. Eng. Data 40, 611 31 Šťastný, J. (1941): Mixing of spirits (Míchání lihovin – in Czech). Praha 32 Žáček, Z.; Andrlík, K. (1953): Chemical tables (Chemické tabulky – in Czech). SPN Praha 33 Holeček, O. (2006): Chemical-engineering tables (Chemicko-inženýrské tabulky – in Czech). Institute of Chemical Technology, Prague 34 Yaws, C.L., et al. (1991): Equation for liquid density, Hydrocarbon Processing 103, January 35 Henke, S.; Kadlec, P.; Bubník, Z. (2009/10): Physico-chemical properties of ethanol – Compilation of existing data. Journal of Food Engineering. In press. doi:10.1016/j.jfoodeng.2009.06.050 Propriétés de l’éthanol et des solutions aqueuses d’éthanol – Tables et équations (Résumé) Cet article traite des propriétés physico-chimiques de l’éthanol et des solutions aqueuses d’éthanol. Ces données, tirées de la littérature, sont présentées sous forme d’équations et de tables. Les propriétés présentées comprennent des données pour l’éthanol pur (densité, pression de vapeur, tension superficielle, viscosité, capacité calorifique molaire et spécifique, enthalpie d’évaporation, conductivité thermique et indice diélectrique statique) et pour les solutions aqueuses d’éthanol (de 0 à 100 % éthanol) des données sous forme de tables comme les propriétés en fonction de la concentration, la tension superficielle et la conductivité thermique à 20 °C , la densité, la viscosité , le point d’ébullition et l’équilibre liquide-vapeur à la pression normale. Propiedades de etanol y de soluciones de etanol y agua – tablas y ecuaciones (Resumen) El artículo trata de las propiedades químicofísicas de etanol y soluciones de etanol y agua. En base de los datos de la literatura de etanol y soluciones de etanol y agua se presentan ecuaciones y tablas. Se describen las siguientes propiedades: (a) para etanol puro: densidad, presión de vapor, tensión superficial, viscosidad, capacidad calórica molar y específica, entalpía de evaporación, conductibilidad térmica y permitividad relativa estática y (b) para soluciones de agua y etanol (0–100 % etanol): concentración, tensión superficial y conductividad térmica a 20 °C, densidad, viscosidad, punto de ebullición y el equilibrio de vapor y líquido a presión normal. Authors’ address: Pavel Kadlec, Svatopluk Henke, Zdeněk Bubník, Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; e-mail: [email protected]; svatopluk. [email protected]; [email protected] Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613 613
© Copyright 2025 Paperzz