Properties of ethanol and ethanol-water solutions – Tables and

Properties of ethanol and ethanol-water solutions –
Tables and Equations
Eigenschaften von Ethanol und Ethanol-Wasser-Lösungen – Tabellen und Gleichungen
Pavel Kadlec, Svatopluk Henke, Zdeněk Bubník
This paper deals with the physico-chemical properties of ethanol
and ethanol-water solutions. The data of ethanol properties and its
water solutions, which were obtained from literature, are presented
in the form of Equations and Tables.Extended properties include
data for pure ethanol (density, vapor pressure, surface tension, viscosity, molar and specific heat capacity, enthalpy of evaporation,
thermal conductivity and static relative permittivity) and tabled
data for ethanol-water solutions (0–100% ethanol) as well: concentrative properties, surface tension and thermal conductivity at
20 °C, density, viscosity, boiling point and equilibrium liquid-vapor at normal pressure.
Key words: ethanol, ethanol-water solution, physico-chemical
properties
1 Introduction
Data of physico-chemical properties of ethanol are important for
chemical engineering calculations, modeling and the evaluation of
the ethanol production process and use of ethanol for food and nonfood applications.
Properties of ethanol are presented in the form of Tables as well
as by formulas. One of the most important goals of this paper is
to develop algorithms for calculation of the extended properties of
ethanol collected from the literature. Extended properties include
data for pure ethanol (density, vapor pressure, surface tension, viscosity, molar and specific heat capacity, enthalpy of evaporation,
thermal conductivity and static relative permittivity) and tabulated
data for ethanol-water solutions (0–100% ethanol) as well: concentrative properties, surface tension and thermal conductivity at 20
°C, density, viscosity, boiling point and equilibrium liquid–vapor
at normal pressure.
2 Properties of pure ethanol
The data for properties of pure ethanol from various authors are
together collected in Table 1 including the numerical reference to
the source.
Temperature dependences of chosen properties of pure ethanol
for the temperature range from –20 to 80 °C for commonly used
chemical engineering calculations are summarized in Table 2. The
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613
Der Beitrag befasst sich mit den physikalisch-chemischen Eigenschaften von Ethanol und Ethanol-Wasser-Lösungen. Die Daten
von Ethanol und der Ethanol-Wasser-Lösungen, die der Literatur
entnommen wurden, werden in Form von Gleichungen und Tabellen dargestellt. Enthalten sind für reines Ethanol Daten von Dichte,
Dampfdruck, Oberflächenspannung, Viskosität, molare und spezifische Wärmekapazität, Verdampfungsenthalpie, Wärmeleitfähigkeit und statische Dielektrizitätszahl und für Ethanol-WasserLösungen (0–100 % Ethanol) Konzentrationseigenschaften, Oberflächenspannung und thermische Leitfähigkeit bei 20 ° C, Dichte,
Viskosität, Siedepunkt und Dampf-Flüssigkeit-Gleichgewicht bei
Normaldruck.
Stichwörter: Ethanol, Ethanol-Wasser-Lösungen, physikalischchemische Eigenschaften
algorithms for calculations of these properties are shown in the following subchapters.
2.1 Density ρ of ethanol in g/cm3 for the temperature range
from –114 to 207 °C
Eq. (1) for the temperature dependence of density of pure ethanol
in the range from –114 to 207 °C was presented by Cibulka [14].
In his work other saturated 1-alkanols from C1 to C10 and n-alkanes
from C5 to C16 are also critically evaluated.
ρ = 1000
7
∑
i =0

T
Ai  1 − 
 Tc 
i /3
(1)
2.2 Vapor pressure p0 of ethanol in kPa for the temperature
range from –3 to 96 °C according to the Antoine equation
The presented eq. (2) for vapor pressure of ethanol dependence on
temperature can be found in Reid [6]. It is the temperature dependence of vapor pressure according to the Antoine equation (known
since 1887) in the range between –3 to 96 °C. In Reid [6] it is possible to find other more complex vapor pressure equations.
ln p0 = A −
B
T +C (2)
607
Table 1: Properties of ethanol
Property
Symbol
Unit Numerical value
Chemical properties
Molecular formula
Molar mass
C2H6O
M
g/mol
46.068
Critical constants
Normal boiling point
Critical temperature
Critical pressure
Critical molar volume
Critical density
Critical compressibility factor
Acentric factor
tb
tc
pc
Vc
ρc Zc
Ω
°C
°C
MPa
cm3/mol
g/cm3
1
1
Physical properties
Melting point
tm °C
Freezing point
tf
°C
tf
°C
Ebullioscopic constant Eb
(K · kg)/mol
Van der Waals constants for gas
a
(Pa · m6)/mol2
b
m3/mol
Density ρ
kg/m3
Vapor pressure
p
kPa
Dependence of boiling point on pressure
∆tb/∆p
K/kPa
Isothermal compressibility κ
1/kPa
Cubic thermal expansion α
1/K
Surface tension
σ
mN/m
Viscosity η
mPa · s
Flash point
tfp
°C
cFL
mL/L
Flammable limits (explosive limits)
Autoignition temperature tAu
°C
Adiabatic flame temperature in air
t
°C
Threshold limit for allowable
airborne concentration
cTLV
g/L
Dissociation constant of pure ethanol
to dilute to aqueous solution
pKa
Permanent dipole moment µ
C/m
Permittivity (dielectric constant)
ε
1
Refractive index
nD
1
Reference
78.29 at 101.325 kPa
240.75
6.137
168
0.276
0.248
0.637
[1]
[1]
[1]
[1]
[2]
[2]
[2]
–114.1
–114.1 at 0.1 MPa
–108 at 100 MPa
1.23
1.256
8.71 · 10–5
789.24 at 20 °C
5.87 at 20 °C
0.249
111.9
0.0014
22.8 at 20 °C
1.195 at 20 °C
13
3.3–190
363
1965
[1]
[3]
[4]
[5]
[6]
[6]
[5]
[7]
[7]
[7]
[7]
[8]
[5]
[5]
[5]
[5]
[9]
0.998 859 at 25 °C,
101.325 kPa
[6]
15.5 at 25 °C
[10]
1.69
[5]
25.45 at 20 °C
[11]
1.361 6 at 589 nm, 20 °C [5]
Thermo-physical properties
Standard molar enthalpy of formation
– pure liquid ethanol
∆Ho
kJ/mol
–277.6 at 25 °C
– pure gaseous ethanol
∆Ho
kJ/mol
–234.8 at 25 °C
Standard molar Gibbs energy of formation
– pure liquid ethanol
∆Go
kJ/mol
–174.8 at 25 °C
– pure gaseous ethanol
∆Go
kJ/mol
–167.9 at 25 °C
Molar heat capacity
– pure liquid ethanol
Cp
J/(mol · K)
112.3 at 25 °C
– pure gaseous ethanol
Cp
J/(mol · K)
65.6 at 25 °C
Specific heat capacity
cp
J/(kg · K)
2 437.08 at 25 °C
Molar enthalpy of fusion
Hfus
kJ/mol 4.931 at –114.1 °C
Specific enthalpy of fusion
hfus
kJ/kg
107.035 at –114.1 °C
Molar evaporation enthalpy
hm,Ev
kJ/mol
38.56 at 78,29 °C
hm,Ev
kJ/mol
42.40 at 25 °C
Specific evaporation enthalpy
hs,Ev
kJ/kg
836.88 at 78,29 °C
hs,Ev
kJ/kg
920.40 at 25 °C
Molar enthalpy of combustion
∆Hcb
kJ/mol
1,235.5 at 25 °C
Specific enthalpy of combustion
∆hcb
kJ/kg
26,818.5 at 25 °C
Molar entropy
Sm
J/(mol · K)
282.59 at 25 °C Entropy of gas formation
Sm
J/(mol · K)
–223.143 at 25 °C
Thermal conductivity
λ
W/(m · K)
0.167 89 at 25 °C
Energy value (Physiological calorific value)
kJ/g
30
2.3 Surface tension σ of ethanol in mN/m for the temperature
range from –114.1 to 243.1 °C
Eq. (3) for the temperature dependence of surface tension of ethanol
is taken from Yaws [16] and is valid from –114.1 to 243.1 °C. The
relation for dependence is known as the Othmer equation [17].
n
 t2 − t 
σ
=
σ
1

 t2 − t1 
608
[5]
[5]
[5]
[5]
[5]
[5]
[6]
[5]
[5]
[5]
[5]
[5]
[5]
[2]
[2]
[2]
[2]
[12]
[13]
2.4 Dynamic viscosity η of ethanol in mPa · s for the temperature range –50 to 100 °C
Eq. (4) is from the book of Perry [18].
ln η = A + BT −1 + CT + DT 2 (4)
(3)
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613
Table 2: Physical properties of pure ethanol – temperature dependences of density, vapor pressure, surface tension, dynamic viscosity, static relative permittivity, molar heat capacity, specific heat capacity, molar evaporation enthalpy, specific evaporation enthalpy,
thermal conductivity, thermal conductivity of ethanol vapor, Prandtl number and Reynolds number, in the temperature range from –20
to 80 °C
Ref.
[14]
[6, 15] [2, 5, 16] [6, 18] [11, 19]
[20]
[20]
Temp. Density
Vapor Surface Dynamic Static
Molar
Specific
pressure tension viscosity relative
heat
heat
capacity
[21]
[21]
[15]
Molar Specific Thermal
evapor- evapor-
conduct-
ation
ation
ivity
enthalpy enthalpy
[15, 22]
Prandtl
Thermal
conductivity number
for ethanol
vapor
t
ρ
p0
σ
η
εr
Cp
cp
hm,Ev
hs,Ev
λ
λ
Pr
°C
kg/m3
kPa mN/m mPa · s 1 J/(mol · K) J/(kg · K) kJ/mol kJ/kg W/(m · K) W/(m · K)
1
–20
–15
–10
–5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
823.15
818.92
814.69
810.46
806.23
802.00
797.76
793.51
789.24
784.96
780.64
776.29
771.91
767.48
763.00
758.47
753.87
749.20
744.45
739.61
734.68
0.34
0.51
0.76
1.11
1.59
2.25
3.14
4.32
5.87
7.88
10.47
13.76
17.89
23.05
29.44
37.27
46.80
58.32
72.15
88.65
108.19
26.34
25.90
25.46
25.02
24.58
24.14
23.69
23.25
22.80
22.35
21.90
21.45
21.00
20.55
20.09
19.63
19.18
18.72
18.26
17.79
17.33
Table 3: Constants for
density (Cibulka [14])
A0
A1
A2
A3
A4
A5
A6
A7
Tc
0.276
–0.2739686
10.49591
–49.98835
123.0696
–162.4311
108.7218
–28.7993
513.88
Table 4: Constants for vapor pressure (Reid [6])
Constant
A
B
C
Value
1.68969 · 101
3.80398 · 103
–4.16800 · 101
2.830
2.510
2.235
1.997
1.792
1.612
1.455
1.317
1.195
1.087
0.992
0.906
0.830
0.761
0.700
0.644
0.594
0.548
0.507
0.469
0.434
31.41
30.54
29.71
28.91
28.16
27.43
26.74
26.08
25.45
24.85
24.28
23.74
23.22
22.73
22.26
21.82
21.39
20.99
20.60
20.24
19.89
98.37
99.58
100.86
102.23
103.68
105.22
106.85
108.57
110.38
112.28
114.27
116.36
118.54
120.82
123.20
125.67
128.24
130.91
133.67
136.52
139.46
2135.34
2161.47
2189.36
2219.04
2250.57
2283.98
2319.30
2356.57
2395.82
2437.08
2480.37
2525.72
2573.13
2622.63
2674.21
2727.88
2783.64
2841.47
2901.36
2963.28
3027.20
Table 6: Constants for
dynamic viscosity (Perry
[18])
Constant
A
B
C
D
Value
–7.10566
1.67513 · 103
1.03679 · 10–2
–1.71008 · 10–5
Table 7: Constants for
static relative permittivity
(Lide [19])
Constant
A
B
C
D
1.51450 · 102
–8.70200 · 10–1
1.95700 · 10–3
–1.55120 · 10–6
Table 5: Constants for surface tension (Yaws [16])
Constant
Value
Units
Constant
22.8
20.0
243.1
0.8760
mN/m
°C
°C
1
R
Tc
A1
A2
A3
A4
A5
A6
Mm 972.76
967.61
962.31
956.84
951.21
945.41
939.43
933.28
926.93
920.40
913.66
906.72
899.57
892.20
884.60
876.76
868.68
860.35
851.75
842.87
833.71
0.17971
0.17836
0.17701
0.17567
0.17435
0.17303
0.17173
0.17044
0.16916
0.16789
0.16663
0.16538
0.16415
0.16292
0.16171
0.16050
0.15931
0.15813
0.15696
0.15580
0.15465
0.00969
0.01016
0.01063
0.01111
0.01159
0.01207
0.01256
0.01305
0.01355
0.01404
0.01455
0.01505
0.01556
0.01608
0.01660
0.01712
0.01764
0.01817
0.01870
0.01924
0.01978
33.6
30.4
27.6
25.2
23.1
21.3
19.7
18.2
16.9
15.8
14.8
13.8
13.0
12.3
11.6
10.9
10.4
9.85
9.37
8.92
8.51
0.5
Re
1
1.0
Re
1
1.5
Re
1
14,544
16,315
18,227
20,288
22,501
24,875
27,414
30,126
33,016
36,093
39,363
42,834
46,514
50,411
54,533
58,891
63,492
68,348
73,468
78,863
84,543
29,089
32,630
36,455
40,575
45,003
49,749
54,828
60,251
66,033
72,186
78,726
85,668
93,028
100,821
109,067
117,782
126,985
136,696
146,936
157,725
169,086
43,633
48,945
54,682
60,863
67,504
74,624
82,242
90,377
99,049
108,279
118,089
128,502
139,542
151,232
163,600
176,672
190,477
205,044
220,404
236,588
253,629
2.5 Static relative permittivity (dielectric constant) εr of ethanol for the temperature range from –110 to 250 °C
Eq. (5) is presented in the Handbook of Lide [5, 19]. The original
data can be found in the article by Wohlfahrt [11].
ε r = A + BT + CT 2 + DT 3 (5)
2.6 Molar and specific heat capacity (Cp, cp) of ethanol in
J/(mol · K) and J/(kg · K) for the temperature range from
–114 to 105 °C
Eqs. (6) and (7) are taken from Zábranský [20].
Value
Table 8: Constants for molar and specific heat capacity (Zábranský [20])
σ1
t1
t2
n
44.81
44.58
44.33
44.08
43.82
43.56
43.28
43.00
42.70
42.40
42.09
41.77
41.44
41.10
40.75
40.39
40.02
39.64
39.24
38.83
38.41
Reynolds number for
velocity of flow v
in m/s
Value
8.314
513.92
15.4028
0.359101
9.35649
25.7454
–41.4812
80.3298
0.04607
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613


T
T
= A1 ln  1 −  + A2  1 − 
R
 Tc 
 Tc 
Cp
−1
3
(6)
cp =
2
T
T
T
+ A3 + A4   + A5   + A6  
 Tc 
 Tc 
 Tc  Cp
Mm
(7)
2.7 Molar and specific evaporation enthalpy (hm,EV, hs,EV) of
ethanol in kJ/mol and kJ/kg for the temperature range
25 to 196 °C
Eqs. (8) and (9) are according to Majer [21].
β
hm,Ev


T
T
= A  1 −  exp  −α 
T
T


c
c
(8)
609
h
(9)
hs,Ev = m,Ev
Mm
2.8 Thermal conductivity λ
of ethanol in W/(m · K) in
the range –114 to 190 °C
Eq. (10) for the dependence
of thermal conductivity on the
thermodynamical temperature is
according to the book of Miller
[15].
λ = A + BT + CT 2 (10)
2.9 Thermal conductivity λ
of ethanol vapor in
W/(m · K) in the range
from 0 to 1000 °C
Eq. (11) for the dependence of
the thermal conductivity on the
temperature is according to Miller [22].
λ = A + BT + CT 2 + DT 3 (11)
Table 9: Constants for
enthalpy of evaporation
(Majer [21])
Constant
Tc
A
α
β
Mm
Value
513.9
50.43
–0.4475
0.4989
0.04607
A
B
C
Value
2.6293 · 10–1
–3.8468 · 10–4
2.2106 · 10–7
Table 11: Constants for
thermal conductivity of
pure ethanol vapor (Miller [22])
Constant
A
B
C
D
λ
Specific heat
capacity
cp
J/(kg · K)
104.27
105.34
106.49
107.72
109.02
110.41
111.87
113.41
115.03
116.72
118.50
120.35
122.29
124.30
126.39
128.55
130.80
133.12
135.53
138.01
140.57
2263.36
2286.58
2311.51
2338.13
2366.46
2396.49
2428.23
2461.66
2496.80
2533.64
2572.18
2612.42
2654.37
2698.02
2743.36
2790.42
2839.17
2889.62
2941.78
2995.64
3051.20
Note: Adapted according to Yaws [2].
4 Properties of ethanol-water solutions
for the concentration range from 0 to 100%
Tables for ethanol-water solutions for the concentration range 0–
100% were adapted according to data from the literature.
Prandtl numbers Pr of pure ethanol in Table 2 were calculated according to eq. (12) by means of the known eqs. (4) for dynamic
viscosity η, (6) and (7) for specific heat capacity (cp) and (10) for
thermal conductivity λ.
η ⋅ cp
838.62
834.99
831.32
827.60
823.83
820.00
816.13
812.20
808.21
804.16
800.04
795.86
791.60
787.28
782.87
778.38
773.80
769.13
764.36
759.49
754.50
–15
–10
–5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
Molar heat
capacity
Cp
J/(mol · K)
Value
–7.79580 · 10–3
4.16600 · 10–5
1.21417 · 10–7
–5.18325 · 10–11
2.10 Prandtl number Pr of pure ethanol
Pr =
Temp.
Density
t
ρ
°C
kg/m3
–20
Table 10: Constants for
thermal conductivity of
pure ethanol liquid (Miller [15])
Constant
Table 12: Density, molar and specific heat capacity of 96%
ethanol-water solution
(12)
4.1 Densities ρ of ethanol-water solutions in kg/m3
The densities of ethanol-water solutions for the temperature range
0–80 °C were taken from and adapted according to Osborne [23],
Recommendation Internationale No. 22: Alcoométrie, Tables alcoométriques internationales [24], Tables alcoométriques: Organisation Internationale de Métrologie Légale [25] and Washburn [26,
27]. The density data are shown in Table 13.
2.11 Reynolds number Re of pure ethanol for a
flow-through pipe of diameter d = 100 mm
Reynolds numbers Re of pure ethanol in Table 2 were
calculated for a flow-through pipe of diameter d = 100
mm for three values of velocity of flow v in m/s (0.5;
1.0; 1.5) according to eq. (13) by means of the known
eqs. (1) for density ρ and (4) for dynamic viscosity η.
Re = v ⋅ d ⋅ρ
η
(13)
3 Properties of 96% ethanol-water
solution
Table 12 gives basic properties such as density, molar
and heat capacity of 96% ethanol-water solution according to Yaws [2].
610
Table 13: Density ρ of aqueous ethanol solutions in kg/m3
Ethanol
content
wE in %
0
10
20
30
40
50
60
70
80
90
100
10
15
999.70
983.90
972.49
959.74
942.35
921.59
899.24
875.99
851.94
826.52
797.76
999.10
983.01
970.65
956.83
938.79
917.73
895.20
871.84
847.69
822.25
793.51
Temperature t in °C
20
25
30
998.20
981.84
968.61
953.79
935.15
913.81
891.10
867.63
843.41
817.95
789.24
997.05
980.40
966.36
950.64
931.45
909.82
886.96
863.37
839.08
813.60
784.96
995.65
978.72
963.92
947.38
927.67
905.77
882.75
859.05
834.70
809.20
780.64
35
40
994.03
976.82
961.31
944.00
923.82
901.65
878.48
854.67
830.27
804.76
776.29
992.22
974.72
958.53
940.52
919.89
897.47
874.14
850.22
825.76
800.26
771.91
Note: Adapted according to Osborne [23], Recommendation Internationale [24], Tables
alcoométriques [25], Washburn [26, 27].
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613
Table 14: Viscosity η of aqueous ethanol solutions in mPa · s
EthanolTemperature t in °C
content
0
10
20
30
40
wE in %
10
20
30
40
50
60
70
80
90
100
3.311
5.319
6.940
7.140
6.580
5.750
4.762
3.690
2.732
1.792
2.179
3.165
4.050
4.390
4.180
3.770
3.268
2.710
2.101
1.455
1.501
2.142
2.667
2.846
2.813
2.547
2.214
1.881
1.542
1.195
1.160
1.553
1.870
2.020
2.020
1.930
1.767
1.531
1.279
0.992
0.907
1.160
1.368
1.482
1.499
1.447
1.344
1.203
1.035
0.830
50
60
70
80
0.734
0.907
1.050
1.132
1.155
1.127
1.062
0.968
0.848
0.700
0.609
0.736
0.834
0.893
0.913
0.902
0.856
0.789
0.704
0.594
0.514
0.608
0.683
0.727
0.740
0.729
0.695
0.650
0.589
0.507
0.430
0.505
0.567
0.601
0.612
0.604
0.434
Note: Adapted according to Reid [6], Perry [18], Dykyj [28], Dyr [29].
Table 15: Surface tensions and
thermal conductivities of aqueous
ethanol at 20 °C
Reference
Ethanol
content
wE
%
0
10
20
30
40
50
60
70
80
90
100
[30]
Surface
tension
σ
mN/m
[15]
Thermal
conductivity
λ
W/(m · K)
72.01
47.53
37.97
32.98
30.16
27.96
26.23
25.10
23.82
22.72
22.80
–
0.461
0.416
0.374
0.335
0.295
0.263
0.230
0.205
0.180
0.169
Note: Adapted according to Miller [15],
Vazquez [30].
4.2 Dynamic viscosity η of ethanolwater solutions in mPa · s
The dynamic viscosities of ethanol-water
solutions for the temperature range 0–80
°C were adapted according to Reid [6],
Perry [18], Dykyj [28] and Dyr [29] and
are shown in Table 14.
4.3 Surface tension and thermal
conductivity of ethanol-water
solutions at 20 °C
Table 16: Concentrative properties of aqueous ethanol solutions at 20 °C
Reference [31, 32]
[5]
[5]
[5]
Ethanol Ethanol
Molality
Molarity
Density
content
content
wE
vb
b
c
ρ
%
% (v/v)
mol/kg
mol/L
kg/m3
0
0.00
0.000
1
1.26
0.219
3
3.76
0.671
5
6.24
1.142
7
8.71
1.634
9
11.16
2.147
11
13.61
2.683
13
16.04
3.243
15
18.46
3.830
17
20.87
4.446
20
24.46
5.427
24
29.20
6.855
28
33.87
8.441
32
38.45
10.215
36
42.94
12.210
40
47.32
14.471
44
51.60
17.055
48
55.77
20.036
52
59.85
23.515
56
63.81
27.626
60
67.68
32.559
64
71.45
38.589
68
75.11
46.125
72
78.67
55.816
76
82.12
68.736
80
85.46
86.824
84
113.957
88
159.178
92
249.620
96
520.946
100
0.000
0.216
0.646
1.074
1.498
1.921
2.341
2.759
3.175
3.589
4.205
5.018
5.817
6.601
7.370
8.120
8.853
9.568
10.266
10.945
11.605
12.250
12.877
13.486
14.077
14.649
15.197
15.724
16.225
16.697
17.133
998.2
996.3
992.7
989.3
986.2
983.3
980.5
977.8
975.2
972.6
968.7
963.2
957.1
950.4
943.1
935.2
926.9
918.3
909.5
900.4
891.1
881.8
872.4
862.9
853.3
843.6
833.5
823.2
812.5
801.3
789.3
[5]
Refractive
index
(589 mn)
nD
1
[5]
[5]
FreezingDynamic
point viscosity
∆t
K
1.3330
0.00
1.3336
0.40
1.3348
1.23
1.3360
2.09
1.3374
2.99
1.3388
3.96
1.3403
5.00
1.3417
6.13
1.3432
7.36
1.3447
8.69
1.3469
10.92
1.3498
14.47
1.3524
18.43
1.3546
22.44
1.3566
25.98
1.3583
29.26
1.3598
32.68
1.3610
36.04
1.3621
39.20
1.3630
42.06
1.3638
44.93
1.3644
47.52
1.3650
49.52
1.3654
1.3657
1.3658
1.3656
1.3653
1.3646
1.3636
1.3616
η
mPa · s
1.000
1.046
1.140
1.228
1.331
1.442
1.563
1.694
1.826
1.955
2.142
2.370
2.581
2.726
2.803
2.846
2.850
2.832
2.789
2.701
2.547
2.415
2.281
2.148
2.015
1.881
1.741
1.606
1.475
1.342
1.195
Note: Adapted according to Lide [5], Šťastný [31], Žáček [32].
The surface tensions and thermal conductivities of ethanol-water
solutions for a temperature of 20 °C were taken from and adapted
according to Miller [15], Vazquez [30] and are shown in Table 15.
nm, freezing point depression ∆t (K) and dynamic viscosity η
(mPa · s) are shown for ethanol content wE in % (m/m), νb in %
(v/v), molality b (mol/kg) and molarity c (mol/L). These data were
taken from and adapted according to Lide [5], Šťastný [31] and
Žáček [32].
4.4 Concentrative properties of ethanol
water solutions at 20 °C
4.5 Boiling point tb of ethanol-water solutions in °C
Table 16 shows the survey of various ways for concentrations of
ethanol-water solutions at 20 °C for ethanol contents wE from 0
to 20% (m/m) with steps of 2% and for the range of 20–100%
with steps of 4%. Density ρ (kg/m3), refractive index nD at 589
The boiling points tb of ethanol-water solutions for 7 values of
pressure (26.66; 53.32; 79.98; 101.31; 130.76; 108.67; 138.10 kPa)
were taken from and adapted according to Dykyj [28] and Dyr [29]
and are shown in Table 17.
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613
611
Table 17: Boiling points tb of aqueous ethanol solutions in °C
Ethanol
content
wE in % 26.66 53.32
79.98 101.31 103.76 108.67 138.10
0
10
20
30
40
50
60
70
75
80
85
90
95
100
93.2
87.0
82.0
79.3
77.7
75.0
74.6
74.2
74.0
73.7
73.5
73.2
72.8
72.6
66.5
60.5
56.2
54.0
53.5
51.2
50.5
49.8
49.5
49.2
48.9
48.6
48.3
48.1
83.3
76.7
72.0
69.3
67.7
66.2
64.9
64.5
64.3
64.8
63.2
63.3
63.5
63.6
Pressure p in kPa
100.0
91.2
87.0
84.5
83.0
82.0
80.9
80.0
79.5
79.2
78.8
78.5
78.3
78.3
106.3
100.6
94.7
91.2
89.5
88.0
87.0
86.1
85.6
85.3
85.0
84.8
84.4
84.2
111.4
105.8
100.0
96.5
94.3
92.8
91.9
91.1
90.7
90.4
90.0
89.7
89.3
89.0
143.4
137.7
131.0
126.4
123.8
122.0
120.9
120.0
119.5
119.0
118.5
118.0
117.4
117.0
Note: Adapted according to Dykyj [28], Dyr [29].
Table 18: Equilibrium liquid-vapor of ethanol-water solutions
at normal pressure
Mole fraction Temper- Mass fraction
of ethanol xE
ature t
of ethanol wE
(for xE)
liquid
vapor
liquid vapor
1
°C
1
0.00
0.01
0.03
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.97
0.99
1.00
0.0000
0.1191
0.2616
0.3425
0.4451
0.5292
0.5765
0.6167
0.6575
0.7027
0.7552
0.8186
0.8978
0.9663
0.9885
1.0000
100.0
96.8
92.5
89.8
86.1
83.1
81.6
80.6
79.7
79.0
78.5
78.2
78.1
78.2
78.3
78.3
0.00
0.01
0.03
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.97
0.99
1.00
0.0000
0.1243
0.2896
0.3940
0.5386
0.6579
0.7114
0.7448
0.7711
0.7964
0.8247
0.8609
0.9130
0.9682
0.9887
1.0000
Temper-
ature t
(for wE)
°C
100.0
98.6
96.2
94.3
90.8
86.7
84.5
83.0
81.9
80.8
79.9
79,0
78.2
78.1
78.2
78.3
azeotrope: xE,liquid = 0.904; wE,liquid = 0.960; t(xE) = t(wE) = 78.17 °C
Note: Adapted according to Holeček [33], Yaws [34].
4.6 Equilibrium liquid-vapor of the mixture ethanol-water at
normal pressure
Table 18 shows equilibrium liquid-vapor of ethanol-water solutions at normal pressure, including the composition of the azeotropic mixture. These data were taken from and adapted according
to Holeček [33] and Yaws [34].
5 Discussion and conclusion
The data of ethanol properties and its aqueous solutions, which
have been obtained from the literature, are here presented in the
form of Equations and Tables. The paper enlarges on the previous
work of Henke [35], where algorithms for calculation of extended
properties of pure ethanol were discussed, by reporting the properties of 96% ethanol-water solutions and ethanol-water solutions in
a whole range of concentrations.
In further work the authors intend to develop new formulas for calculating the properties of 96% ethanol and ethanol-water solutions
as well.
612
Acknowledgements
The work is supported by the research project MSM6046137305 of
Ministry of Education, Youth and Sports of the Czech Republic.
Symbols
a
Van der Waals constants for gas in (Pa · m6)/mol2
b
Van der Waals constants for gas in m3/mol
b
Molality in mol/kg
c
Molarity in mol/L
cFL
Flammable limits (explosive limits) in mL/L
Cp
Molar heat capacity in J/(mol · K)
cp
Specific heat capacity in J/(kg · K)
cTLV Threshold limit for allowable airborne concentration in g/L
Eb
Ebullioscopic constant in (K · kg)/mol
Hfus Molar enthalpy of fusion in kJ/mol
hfus
Specific enthalpy of fusion in kJ/kg
hm,Ev Molar evaporation enthalpy in kJ/mol
hs,Ev Specific evaporation enthalpy in kJ/kg
Mm Molar mass in g/mol
nD
Refractive index
p0
Vapor pressure in kPa
pc
Critical pressure in MPa
pKa Dissociation constant of pure ethanol to dilute to aqueous
solution
Pr
Prandtl number
Re
Reynolds number
Sm
Molar entropy in J/(mol · K)
Sm
Entropy of gas formation in J/(mol · K)
t
Adiabatic flame temperature in air in °C
t
Temperature in °C
T
Temperature in K
tAu
Autoignition temperature in °C
tb
Normal boiling point in °C
tc
Critical temperature in °C
Tc
Critical temperature in K
tf
Freezing point in °C
tfp
Flash point in °C
tm
Melting point in °C
Tr
Reduced temperature in K
v
Velocity of flow in m/s
vb
Ethanol content (Volume fraction) in % (v/v)
Vc
Critical molar volume in cm3/mol
wE
Ethanol content (mass fraction) in % (m/m)
xE
Ethanol content (mole fraction) in % (n/n)
Zc
Critical compressibility factor
α
Cubic thermal expansion in 1/K
∆Go Standard molar Gibbs energy of formation pure liquid/gaseous ethanol in kJ/mol
∆Hcb Molar enthalpy of combustion in kJ/mol
∆hcb Specific enthalpy of combustion in kJ/kg
∆Ho Standard molar enthalpy of formation pure liquid/gaseous
ethanol in kJ/mol
∆tb/∆p Dependence of boiling point on pressure in K/kPa
ε
Permittivity (dielectric constant)
η
Viscosity in mPa · s
κ
Isothermal compressibility in 1/kPa
λ
Thermal conductivity in W/(m · K)
µ
Permanent dipole moment in C/m
ρ
Density in kg/m3
ρc
Critical density in g/cm3
σ
Surface tension in mN/m
Ω
Acentric factor
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613
References
1 Gude, M.; A.C. Teja (1995): IUPAC Part 4. J. Chem. Eng. Data 40, 1025
2 Yaws, C.L. (1999): Chemical Properties Handbook. McGraw-Hill, New
York
3 Isaacs, N.S. (1981): Liquid Phase High Pressure Chemistry. John Wiley,
New York
4 Merrill, L. (1977 and 1982): J. Phys. Chem. Ref. Data 6, 1205 and 11,
1005
5 Lide, D.R.; Kehiaian, H.V. (1994): CRC Handbook of Thermophysical and
Thermochemical Data. CRC Press, Boca Raton
6 Reid, R.C,.; Prausnitz, J.M.; Poling B.E. (1987): The Properties of Gases
and Liquids. 4th ed., McGraw-Hill, New York
7 Lide, D.R. (2006): CRC Handbook of Chemistry and Physics. 87th ed. CRC
Press, LLC; (http://www.hbcpnetbase.com)
8 Jasper, J.J. (1972) : J. Phys. Chem. Ref. Data 1, 841
9 Fristrom, R.M. (1995): Flame Structures and Processes. Oxford University
Press, New York
10 Albert, A.; Serjeant, E.P. (1984): The Determination of Ionization Constants. 3rd ed., Chapman and Hall, London
11 Wohlfarth, C. (1991): Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Landolt-Börnstein, Numerical Data and Functional
Relationships in Science and Technology, New Series, Editor in Chief, O.
Madelung, Group IV, Macroscopic and Technical Properties of Matter, Volume 6, Springer-Verlag, Berlin
12 Vargaftik, N.B.; Filippov, L.P.; Tarzimanov, A.A.; Totskii, E.E. (1994):
Handbook of Thermal Conductivity of Liquids and Gases. CRC Press,
Boca Raton
13 Rose, J.W.; Cooper, J.R. (1977): Technical Data on Fuel. 7th ed, British
National Committee, World Energy Conference, London
14 Cibulka, I. (1993): Saturated liquid densities of l-alkanols from C1 to C10
and n-alkanes from C5 to C16: critical evaluation of experimental data. Fluid
Phase Equilibria 89, 1–18
15 Miller, J.W.Jr.; Yaws, C.L. (1976): Correlation constants for liquids. Chem.
Eng. 83, 153
16 Yaws, C.L.; Miller, J.W.; Shah, P.N.; Schorr, G.R.; Patel, P.M. (1976): Correlation constants for liquids: heat capacities, surface tensions, densities,
thermal conductivities. Chemical Engineering, McGraw-Hill, New York
17 Othmer, D.F.; Josefowitz, S.; Schmutzler; A.F. (1948): Correlating Surface
Tensions of Liquids from Ind. Eng. Chem. 40, 886–889
18 Perry, R.H.; Green, D.W. (1997): Perry’s chemical engineers’ handbook.
McGraw-Hill, New York
19 Lide, D.R. (2007/08): CRC Handbook of Chemistry and Physics. 88th ed.
CRCnetBASE Taylor and Francis Group LLC
20 Zábranský, M.; Růžička, V.; Majer, V.; Domalski, E.S. (1996): Heat capacities of liquids. Critical review and recommended values. J. Phys. Chem.
Ref. Data, Monograph No.6, American Chemical Society, Washington
D.C.
21 Majer, V.; Svoboda, V. (1985): Enthalpies of Vaporization of Organic Compounds. IUPAC Chemical Data. Series No. 32, Blackwell, Oxford
22 Miller, J.W.Jr.; Shah, N.P.; Yaws, C.L. (1976): Correlation constants for
chemical compounds. Chem. Eng. 83, 153
23 Osborne, N.S.; McKelvy, E.C.; Bearce, H.W. (1913): Density and thermal
expansion of ethyl alcohol and its mixtures with water. Bulletin Bureau
Standards 9, 327–474
24 Recommendation Internationale No. 22 (1973): Alcoométrie, Tables alcoométriques internationales. Paris
25 Tables alcoométriques (1975): Organisation Internationale de Métrologie
Légale, Paris
26 Washburn, E.W. (1926–1930): International Critical Tables of Numerical
Data. Physics, Chemistry and Technology. (1st Electronic Edition), Knovel,
2003
27 Washburn, E.W. (1926–1932): International Critical Tables of Numerical Data. Physics, Chemistry and Technology. Vol. 3, McGraw-Hill. New
York
28 Dykyj, J. (1953): Physical-chemical tables (Fysikálně-chemické tabulky
– in Czech). SNTL Praha
29 Dyr, J.; Grégr, V.; Seiler, A. (1963): Distiller’s technology II. (Lihovarství
II. – in Czech). SNTL Praha
30 Vazquez, G.; Alvarez, E.; Navaza, J.M. (1995): J. Chem. Eng. Data 40,
611
31 Šťastný, J. (1941): Mixing of spirits (Míchání lihovin – in Czech). Praha
32 Žáček, Z.; Andrlík, K. (1953): Chemical tables (Chemické tabulky – in
Czech). SPN Praha
33 Holeček, O. (2006): Chemical-engineering tables (Chemicko-inženýrské
tabulky – in Czech). Institute of Chemical Technology, Prague
34 Yaws, C.L., et al. (1991): Equation for liquid density, Hydrocarbon Processing 103, January
35 Henke, S.; Kadlec, P.; Bubník, Z. (2009/10): Physico-chemical properties
of ethanol – Compilation of existing data. Journal of Food Engineering. In
press. doi:10.1016/j.jfoodeng.2009.06.050
Propriétés de l’éthanol et des solutions aqueuses
d’éthanol – Tables et équations (Résumé)
Cet article traite des propriétés physico-chimiques de l’éthanol et
des solutions aqueuses d’éthanol. Ces données, tirées de la littérature, sont présentées sous forme d’équations et de tables. Les
propriétés présentées comprennent des données pour l’éthanol pur
(densité, pression de vapeur, tension superficielle, viscosité, capacité calorifique molaire et spécifique, enthalpie d’évaporation,
conductivité thermique et indice diélectrique statique) et pour les
solutions aqueuses d’éthanol (de 0 à 100 % éthanol) des données sous forme de tables comme les propriétés en fonction de la
concentration, la tension superficielle et la conductivité thermique
à 20 °C , la densité, la viscosité , le point d’ébullition et l’équilibre
liquide-vapeur à la pression normale.
Propiedades de etanol y de soluciones de etanol y agua
– tablas y ecuaciones (Resumen)
El artículo trata de las propiedades químicofísicas de etanol y soluciones de etanol y agua. En base de los datos de la literatura de etanol y soluciones de etanol y agua se presentan ecuaciones y tablas.
Se describen las siguientes propiedades: (a) para etanol puro: densidad, presión de vapor, tensión superficial, viscosidad, capacidad
calórica molar y específica, entalpía de evaporación, conductibilidad térmica y permitividad relativa estática y (b) para soluciones de
agua y etanol (0–100 % etanol): concentración, tensión superficial
y conductividad térmica a 20 °C, densidad, viscosidad, punto de
ebullición y el equilibrio de vapor y líquido a presión normal.
Authors’ address: Pavel Kadlec, Svatopluk Henke, Zdeněk Bubník, Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; e-mail: [email protected]; svatopluk.
[email protected]; [email protected]
Sugar Industry / Zuckerindustrie 135 (2010) No. 10, 607–613
613