1. Let x be the no. of toy cars of type A Let y be the no. of toy cars of type B Let z be the no. of toy cars of type C 2x + 3y + z = 100 x + 4y +3z = 150 x + 5y + 2z = 130 … (1) … (2) … (3) Using GC, x = 20, y = 10, z = 30 No. of toy cars of type A is 20 No. of toy cars of type B is 10 No. of toy cars of type C is 30 Total profit = 20($1) +10($2)+30($3) = $130 2. x − 10 − ( x − 5) > 0 x+2 x − 10 − ( x + 2)( x − 5) >0 x+2 − x 2 + 4x >0 x+2 x ( x − 4) <0 x+2 x < - 2, or 0<x<4 For the inequality x − 11 x +1 x − 1 < −2 Hence, x −1 0 < x −1 < 4 or x < −1 (n.a.) or 3. > x − 6, replace x above by 1< x <5 ∴ 1 < x < 25 2 (i) Let the first three terms of the GP be a , ar , ar . ( ) a (ar ) ar 2 = a 3 r 3 = (ar ) = 1728 ar = 1728 = 12 12 r= " a 3 [M1] 3 (1) ( 2 When the third term is reduced by 2, the resulting AP is a , ar , ar − 2 So Tn − Tn −1 = Tn +1 − Tn ) ( ) (ar − 2) − 2ar + a = 0 ar − a = ar 2 − 2 − ar 2 2 ⎛ 12 ⎞ ⎛ 12 ⎞ a ⎜ ⎟ − 2 − 2a ⎜ ⎟ + a = 0 ⎝a⎠ ⎝a⎠ a 2 − 26a + 144 = 0 a = 18 or 2 r= 3 So a =8 3 r= 2 (NA as series is convergent) Therefore the three terms of the GP are 18, 12, 8. (ii) For convergent series, S= (iii) r <1 a 18 18 = = = 54 2 1 1− r 1− 3 3 The AP has first term a = 18 ⎛2⎞ d = Tn − Tn −1 = ar − a = 18⎜ ⎟ − 18 = −6 ⎝3⎠ and common difference n [2a + (n − 1)d ] 2 n = [36 − 6(n − 1)] 2 n = [42 − 6n] 2 = 21n − 3n 2 Sn = 5Sn > S 5( 21n − 3n 2 ) > 54 15n 2 − 105n + 54 < 0 0.559 < n < 6.441 n = 1,2,3,4,5,6 4. (i) Since every horizontal line cuts the graph of f(x) at most once, therefore f is oneone. Since f is one-one, hence f −1 exists. (ii) 1 1 − e−x 1 1 − e −x = y 1 e −x = 1 − y y= ⎛ 1⎞ x = − ln⎜⎜1 − ⎟⎟ y⎠ ⎝ ⎛ 1⎞ f −1 ( x) = − ln⎜1 − ⎟, x > 1 ⎝ x⎠ (iii) Since R g = (−∞, 0) ⊄ D f = (0, ∞) , fg does not exist. Since R f = (1, ∞) ⊂ D g = (0, ∞) , gf exists. 1 ⎛ 1 ⎞ gf ( x) = g ⎜ = −1 − , x>0 −x ⎟ 1 − e −x ⎝1− e ⎠ (iv) k =1 y = 1− x x = 1− y g −1 ( x) = 1 − x, x ≤ 0 5. (i) Using GC, the root α = 0.16744919 ≈ 0.16745 (to 5 decimal places) 1 3 1 (ii) Using x1 = 0, x2 = 6 (x 1 + 1) = 6 ( [0]3 + 1) = 0.166 666 666 7 1 x3 = 6 ( [0.166 666 666 7]3 + 1) = 0.167 438 271 6 1 Using GC command: 6 ( [Ans]3 + 1), we generate the rest of the xi values x4 = 0.167 449 038 x5 = 0.167 449 189 (stabilised at 5 decimal places) So the sequence converges to α ≈ 0.16745 (iii) Since when n → ∝ , xn → a and also xn + 1 → α 1 3 1 Hence, the recurrence relation xn + 1 = 6 (x n + 1) tends to α = 6 ( α3 + 1) ⇒ 6 α = α3 + 1 3 ⇒ α −6α+1=0 But this is just the equation where α is its root. Hence the sequence can be used to estimate the root α. 6. (a) y= y (x − 4)2 x2 −4 1 0 (1,−3) 2 −2 x 4 −4 For no real roots, −3 < m < 0 (b)(i) y = f (3x – 1) y (1, 3) 2 0 (ii) y2 = f (x) x 1 3 y (2, 3 ) 2 −1 x 0 − 2 (2,− 3 ) (iii) y = f ′( x ) y −1 7 (i) dx = cos t dt 0 2 dy = −k sin t dt dy = − k tan t dx (ii) For tangents parallel to y-axis, t = − π π , 2 2 For tangents parallel to x-axis, t = − π ,0, π π dy = −k 4 dx 1 Grad of normal = k π 1 x = k + sin = k + 4 2 π k y = k cos = 4 2 (iii) At t = , Equation of normal: y− k 2 = 1⎛ 1 ⎞ ⎜x −k − ⎟ k⎝ 2⎠ Since normal has a y-intercept of -1, k 1⎛ 1 ⎞ = ⎜0 − k − ⎟ 2 k⎝ 2⎠ −1− k =1 (iv) When k = 1, equation of normal: y− 1 = x −1− 2 y = x −1 1 2 x At point P, cos t = 1 + sin t − 1 cos t = sin t tan t = 1 3π t=− 4 3π When t = − , 4 1 x = 1− 2 1 y=− 2 ⎛ 1 Intersection point P = ⎜1 − ⎝ 8. Solution: (a)(i) 2 ∫ sin ,− 1 ⎞ ⎟ (Ans.) 2⎠ −1 2 x dx = x sin −1 2 x − ∫ = x sin −1 2 x + (a)(ii) ∫x 2 2x 1− 4x2 dx 1 1 − 4x 2 + c 2 1 (2 x − 2) 1 x dx + ∫ dx = ∫ 2 2 x − 2x − 3 − 2x + 3 ( x − 1) 2 + ( 2) 2 dx = 1 1 ⎛ x −1⎞ tan −1 ⎜ ln x 2 − 2 x + 3 + ⎟+c 2 2 ⎝ 2 ⎠ (b) 2 ∫ 4x 2 + 1 dx = ∫ sec 2 θ tan 2 θ + 1 = ∫ sec θ dθ dθ = ln sec θ + tan θ + c = ln 1 + 4 x 2 + 2 x + c (c) ∫ 4 1 4 a a 2 − x 2 dx = ∫ a 2 − x 2 dx + ∫ x 2 − a 2 dx 1 a a 4 ⎡ ⎤ x ⎤ ⎡ x3 = ⎢a 2 x − ⎥ + ⎢ − a 2 x ⎥ 3 ⎦1 ⎣ 3 ⎣ ⎦a 3 4a 3 65 − 5a 2 + = 3 3 9. (a) 2(cos π π a 2b + i sin ) = + 2 2 1+ i 1− i a (1 − i ) + 2b(1 + i ) 2 0 + 2i = a a 0 + 2i = ( + b) + (b − )i 2 2 ∴b = − a 2 b− and a =2 2 Solving a = -2, b = 1 (b) The other root is –i P ( z ) = ( z − 1)( z 2 − i 2 ) = ( z − 1)( z 2 + 1) = z3 − z 2 + z −1 (c) iz 4 = −81 z4 = − 81 i × = 81i i i π i = 81e 2 ⋅ e 2 nπi = 81e z = 3e ( z1 = 3e 10. nπ π + )i 2 8 (− 7π )i 8 π ( 2 nπ + ) i 2 , n = −2, − 1 , 0, 1 , n = −2,−1,0,1 , z 2 = 3e (− 3π )i 8 π , z 3 = 3e Differentiating y = v + x 2 , with respect to x, y dy = 1 + 2x − 2 dx x dv v + x2 + 2x = 1 + 2x − dx x2 dv v v = 1− 2 −1 = − 2 dx x x ( )i 8 , z 4 = 3e ( 5π )i 8 dy dv = + 2x . dx dx Correct substitution and simplification. (Shown) dv dx =− 2 v x dv dx ∫ v = −∫ x 2 x −1 1 ln v = − +c = +c −1 x When x = 1, y = 2, v = 1. 1 c = ln 1 − = −1 1 1 ∴ ln v = − 1 x v=e 1 −1 x 1 y − x2 = e x y = x +e 2 11 −1 1 −1 x → AQ = q − a = λ a + (1 − λ)b − a = (1 − λ)( b − a) → → → = (1 − λ)AB ⇒ AQ // AB and having a common point A. Hence, the vector q is collinear with points A and B. ⎛4⎞ ⎛1⎞ ⎜ ⎟ ⎟ ⎜ Given a = ⎜ 1 ⎟ and b = ⎜−2⎟ ⎝ 0⎠ ⎝ 6⎠ Given also angle between OA and OQ is 60° → |OA | = 2 1 ⎛4⎞ ⎛ 4−3λ ⎞ ⎝ 0⎠ ⎝ 6⎠ ⎝ 6−6λ⎠ ⎛ ⎞ → ⎟ ⎜ ⎟ ⎜ ⎜ ⎟ OQ = λ a + (1 − λ)b = λ ⎜ 1 ⎟ + (1 − λ)⎜−2⎟ = ⎜ 3λ−2 ⎟ → |OQ | = 2 2 (4−3λ) +(3λ−2)2+(6−6λ) = 2 54λ −108λ + 56 → → → → We’ve OA .OQ = |OA ||OQ | cos 60° ⎛ 1 ⎞ ⎛ 4−3λ ⎞ 1 ⎟ ⎜ ⎟ ⎜ 2 ⇒ ⎜ 1 ⎟ . ⎜ 3λ−2 ⎟ = 2 54λ −108λ + 56 (2 ) ⎝ 0⎠ ⎝ 6−6λ⎠ 2 ⇒ 4 = 108λ −216λ + 112 2 ⇒ 42 = 108λ −216λ + 112 2 ⇒ 0 = 108λ −216λ + 96 ⇒ (3λ − 4)(3λ − 2) = 0 4 2 ⇒ λ = 3 or λ = 3 12. (a) i ( z + 2i ) = z − 2 z − (0 − 2i ) = z − (2 + 0i ) 2 –2 x –2 z − (−2) = 2 sin 12. π 4 = 2 = 2 2 OP |z| (b) (i) OQ = |1/z*| |z| = |1/z| = |z|2 So OP : OQ = |z|2 : 1 1 (ii) w = z + z* 1 2(cos θ − i sin θ) 1 1 cos θ + i sin θ = 2(cos θ + i sin θ) + 2 × (cos θ − i sin θ) cos θ + i sin θ 1 cos θ + i sin θ = 2(cos θ + i sin θ) + 2 (cos2 θ + sin2 θ) 5 = 2 (cos θ + i sin θ) 5 5 Re(w) = 2 cos θ, Im(w) = 2 sin θ = 2(cos θ + i sin θ) +
© Copyright 2025 Paperzz