Print Test 1 of 5 https://assessment.casa.uh.edu/Assessment/PrintTest.htm Quiz 21 Question 1 Find the Taylor polynomial P4 (x) centered at x = 0 for the function f(x) = x − 3 cos(x) 1 4 x 4 a) −1 + 3x + x 2 + b) 3−x− c) −3 + x + 3 2 1 4 x − x 2 8 d) −3 + x + 3 2 1 4 x − x 4 2 e) −3 − x + 3 2 1 4 x − x 4 4 3 2 1 4 x − x 8 2 Question 2 Find the Taylor polynomial P4 (x) centered at x = 0 for the function f(x) = 10 ln(cos(x)) 5 4 x 6 a) 5x 2 + b) 10 − 5x 2 + c) 10 + 5x − d) −5x 2 − e) −10 + 5x 2 − 5 4 x 12 5 2 5 3 25 4 x + x − x 4 8 64 5 4 x 6 5 4 x 12 Question 3 Find the Taylor polynomial Pn (x) centered at x = 0 for the function f(x) = e−6 x 4/17/2016 2:27 PM Print Test 2 of 5 https://assessment.casa.uh.edu/Assessment/PrintTest.htm n a) ∑ (−1) b) ∑ k=0 n c) ∑ k=0 n d) ∑ k=0 n e) ∑ k=1 6k x k k! k=1 n k+1 6k+1 x k k! (−1) k 6k x k k! (−1) k x k k! 6k x k k! Question 4 Find the Taylor polynomial Pn (x) centered at x = 0 for the function f(x) = cos(2 x) n/2 a) ∑ k=0 n/2 b) ∑ k=0 n/2 c) ∑ k=0 n d) ∑ k=0 n e) ∑ k=0 (−1) k 22 k x 2 k (2 k)! (−1) 2k 2k 2k 2 x (2 k)! (−1) k 22 k+1 x 2 k+1 (2 k + 1)! (−1) k 22 k−1 x 2 k−1 (2 k − 1)! 22 k x 2 k (2 k)! Question 5 Use the values in the table below and the formula for Taylor polynomials to give the 4th degree Taylor polynomial for f centered at x = 0 . f(0) f '(0) f ''(0) f '''(0) f (4) (0) -5 -2 -2 4 -5 4/17/2016 2:27 PM Print Test 3 of 5 https://assessment.casa.uh.edu/Assessment/PrintTest.htm a) −5x 4 + 4x 3 − 2x 2 − 2x − 5 b) −5 − 2x − x 2 + 4 3 5 4 x − x 4 3 c) −5 − 2x − x 2 + 2 3 5 4 x − x 24 3 d) −5 − 2x − 2x 2 + 2x 3 − e) not enough information 5 4 x 6 Question 6 Let Pn be the n th Taylor Polynomial of the function f(x) centered at x = 0 . Assume that f is a function such that ∣ f (n) (x) ∣≤ 1 for all n and x (the sine and cosine functions have this property.) Estimate the 1 1 error if P6 ( ) is used to approximate f( ) . 4 4 a) 1 ( ) 4 7! b) 1 7! c) 1 6! d) e) 7 1 ( ) 4 6! 6 1 ( ) 4 5! 5 Question 7 Assume that f(x) = ln(1 + x) is the given function and that Pn represents the nth Taylor Polynomial centered at x = 0 . Find the least integer n for which Pn (0.7) approximates ln(1.7) to within 0.01. a) 11 4/17/2016 2:27 PM Print Test 4 of 5 https://assessment.casa.uh.edu/Assessment/PrintTest.htm b) 10 c) 5 d) 7 e) 9 Question 8 −−−− √ Use a Taylor polynomial centered at x = 0 to estimate e(1.6) to within 0.01. a) 2.122 b) 2.522 c) 1.922 d) 2.322 e) 2.222 Question 9 Find the Lagrange form of the remainder R n for f(x) = e3 x a) 27 x 5 e3 c , |c| < |x| 40 b) 81 x 5 e3 c , |c| < |x| 560 c) 81 x 6 e3 c , |c| < |x| 80 d) 81 x 5 e3 c , |c| < |x| 40 e) 27 x 6 e3 c , |c| < |x| 80 centered at x = 0 when n = 5 Question 10 Expand g(x) = e−6 x in powers of (x + 1) . 4/17/2016 2:27 PM Print Test 5 of 5 https://assessment.casa.uh.edu/Assessment/PrintTest.htm ∞ a) ∑ (−1) k+1 6 k+1 e 6 (x + 1) k! k=0 ∞ b) ∑ k=0 ∞ c) ∑ (−1) k e6 6k (x + 1) k! ∞ d) ∑ k=0 ∞ e) ∑ k=0 k (−1) k+1 6 e (x + 1) k! k (−1) k−1 6k (x + 1) k! k k=0 (−1) k e6 (x + 1) k! k k 4/17/2016 2:27 PM
© Copyright 2025 Paperzz