5.7 Inverse Trigonometric Functions Definition of the Inverse Trig. Functions 1. arcsin x quadrants I and IV 2. arccos x quadrants I and II 3. arctan x quadrants I and IV p p - £ y£ 2 2 0 £ y £p p p - < y< 2 2 3 Find the values of : Ê 1ˆ arcsinÁ - ˜ Ë 2¯ sin -1 3 2 I or IV -1 2 p - 30! or 6 I or IV p 60! or 3 2 3 1 2 arccos 2 I or II p 45! or 4 2 1 arccos(- 1) 180! or p 0 1 -1 1 Find the exact value. 2ˆ Ê tanÁ arccos ˜ 3¯ Ë opp 5 = = adj 2 3 5 2 È Ê 3 ˆ˘ cos ÍarcsinÁ - ˜˙ Ë 5 ¯˚ Î adj 4 = = hyp 5 4 5 -3 Find sin(arccos 3x) 1 0£ x£ 3 1 = (3x)2 + b2 1 ?= 3x sin(arccos 3x) cot(arccos 3x) = 1- 9x = b 2 opp 1- 9x = = hyp 1 3x 1- 9x2 2 Derivatives of the Inverse Trigonometric Functions pg. 375 3 3 = 2 2 1+ 9x 1 + (3 x) -1 2 d 1 1 2 x ( ) arcsin x = = dx 2 x 1- x 1- x d [arctan(3x)]= dx [ ] 2x 2e d 2x = arc sece = [ ] 2x 2x 2 dx e (e ) -1 2 e -1 4x Differentiate y = arcsin x + x 1 - x 2 Ê1ˆ 2 -1 2 2 y'= + x -2x 1x + 1x Á ˜ ( ) ( ) 2 Ë2¯ 1- x 1 1 = 1- x = ( 2 - 2 1- x 2 1- x 2 x 2 1- x ) =2 + 1- x = 2 2 1- x 2 1- x +1- x 2 1- x 2 2
© Copyright 2026 Paperzz