WORKSHEET 07/12/2016 1. Determine which of the following series absolutely converge, conditionally converge or diverge : p P1 P1 P1 n+1 p1 n 3p n+1 n 1 ( 1) n=1 ( 1) n=1 n=1 ( 1) ln n n n+1 P1 n=1 ( P1 n=1 ( n 10 1)n (n+1)! P1 n=1 ( 1)n+1 (0.1) n P1 n n=1 ( 1)n+1 2n!n 1)n arctan(n) (n2 +1) 2. a) Find the series’ radius and interval of convergence. For what values of x does the series converge b) absolutely c) conditionally: P1 (3x 2)n P1 ( 1)n xn P1 4n x2n n=1 P1 n=1 n n(x+3)n 5n n=1 P1 n=1 (1 n=1 n! + n1 )n xn 1 n P1 n=1 n!(x 4)n 3. The series sec x = 1 + x2 2 + 5 4 24 x + 61 6 720 x + 277 8 8064 x + ... converges to sec x for ⇡/2 < x < ⇡/2 . a. Find the first five terms of a power series for the function ln | sec x + tan x|. For what values of x should the series converge? b. Find the first four terms of a series for sec x tan x . For what values of x should the series converge? 2
© Copyright 2026 Paperzz