Mathematics - list 4 1. Compute indenite integrals √ 2 √ 3 −x x )dx, (4) xex dx, (1) (x3 − 3x + 7)dx, (2) (2 3 x2 − x1 + x22 )dx, (3) ( 3x √ R 2 R x R R xα (5) (x + 1) sin xdx x ln xdx, where α∈R R , (6) e cosR xdx, (7) ln xdx, (8) R R 1 is a constant, (9) ln2 xdx, (10) sin 2x cos xdx, (11) sin2 xdx, (12) (2x+1) 2 dx, √ R √ R R R√ 2 5 2 3 (13) 3x + 1dx, (14) x x − 1dx, (15) x(2x +1) dx, (16) (3x +2) x + 2x + 1dx, R R R R x2 2 dx, (21) (17) x22x+3 arctan xdx (19) xe−2x +1 dx, (20) √ 5 3 +3x−1 dx, (18) x +1 R R R R √ R −1 R R x tan xdx, (23) sin√x x dx, (24) ex2x dx, (25) arctan 1+x2 dx, (26) R R x√ R R √ 3 −x e +1 e ex + 1, (28) (2x + 1) sin 3xdx, (29) dx, (30) R ex 2 R R R ln ln x 2 x(x +1)ex dx, (3x−1)e dx, (31) (2x+3) ln(x+1)dx, (32) x dxR, (33) R √ R (34) 2x x2 + 1 ln(x2 +1)dx, (35) sin(2x)esin x dx, (36) ln(sin2 x)(tan x)−1 dx. R √ cos x dx, (22) 1+sin x √ 3 ln x+1 dx, (27) x −3x R 2. (∗ optional) Compute indenite integrals x+1 +x−1 x+1 x−1 (1) x−1 dx, (2) x x+1 dx, (3) x2x+1 , (4) x2 +4x+5 dx, (5) (x+1) 2 (x+2) dx, +x−2 dx √ √ R R R R R x 1+√x x+1 x dx (6) (x2 +4)(x−1) dx, (7) dx, (9) ex +e−x dx, (10) 2eex +1 dx, x dx, (8) 1− x R√ (11) ex + 1dx. R R 2 R R R 3. (E1 ) Check which of the numbers I1 or I2 is greater: R1 R1 2 (a) I1 = 0 8xe−4x dx and I2 = 0 xe−x dx, (b) I1 = Re 1 3 ln2 x x dx and I2 = Re 1 x2 ln xdx. √ 4. (E) Let f (x) = | x − 1| for x ≥ 0. (a) Determine local extremes of f . (b) Find the area of the region bounded by the graph of f and the lines x = 0, x = 4, y = 0. 5. (E) Let f (x) = | x1 − 1| for x > 0. (a) Determine local extremes of f . (b) Find the area of the region bounded by the graph of f and the lines x = e−1 , x = e, y = 0. 6. Sketch the region enclosed by the given curves and nd its area √ (1) y = 3 − x, y = x + 1, y = 0, x = 4. (2) y = x1 , y = x, y = 14 x, x > 0. (3) (4) (5) (6) 1 Means x = y4 , y = √ 2 − x, y = 0. y = x − x − 6 and y = −x2 + 5x + 14, √ y = 2x2 − 1, y = x, y = −x. 2 y = xe−2x , y = 0, x = 1 2 that a task was on an exam. 1 7. (E) Let f (x) = x tet dt for x < 0. (a) Find the formula for f (x) computing the denite integral. (b) Determine the interval at which f increases slower (i.e., is increasing and concave). R0 8. (E) Let f (x) = x3 (x4 − 16)3 . R (a) Calculate f (x)dx. (b) Find the antiderivative of the function f (x) for which the minimum value on the interval [1, 3] is equal to 5. 2
© Copyright 2026 Paperzz