bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Aneo-sexchromosomeintheMonarchbutterfly,Danaus plexippus JamesR.Walters*andAndrewJ.Mongue DepartmentofEcologyandEvolutionaryBiology,UniversityofKansas,Lawrence,KS,USA *Authorforcorrespondence:JamesRWalters,DepartmentofEcologyandEvolutionary Biology,UniversityofKansas,Lawrence,KS,USA phone:785-864-6341 email:[email protected] bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Abstract Wereportthediscoveryofaneo-sexchromosomeinMonarchbutterfly,Danaus plexippus,andseveralofitscloserelatives.Z-linkedscaffoldsintheD.plexippusgenome assemblywereidentifiedviasex-specificdifferencesinIlluminasequencingcoverage. Additionally,amajorityoftheD.plexippusgenomeassemblywasassignedtochromosomes basedoncountsof1-to-1orthologsrelativetothebutterflyMelitaeacinxia(withreplication usingtwootherLepidopteranspecies),wheregenomescaffoldshavebeenrobustlymappedto linkagegroups.Combiningsequencing-coveragebasedZ-linkagewithhomologybased chromosomalassignmentsprovidedstrongevidenceforaZ-autosomefusionintheDanaus lineage,involvingtheautosomehomologoustochromosome21inM.cinxia.Coverageanalysis alsoidentifiedthreenotableassemblyerrorsresultinginchimericZ-autosomescaffolds.The timingofthisZ-autosomefusioneventcurrentlyremainsambiguousduetoincomplete samplingofkaryotypesintheDanainitribeofbutterflies.Thediscoveryofaneo-Zandthe provisionalassignmentofchromosomelinkagefor>90%ofD.plexippusgeneslaysthe foundationfornovelinsightsconcerningsexchromosomeevolutioninthisincreasingly prominentfemale-heterogameticmodelspeciesforfunctionalandevolutionarygenomics. Background Majorrearrangementsofkaryotypeandchromosomestructureoftenhavesubstantial evolutionaryimpactsonboththeorganismscarryingsuchmutationsandthegeneslinkedto suchgenomicreorganization[1,2].Additionally,suchlarge-scalechromosomalmutations oftenpresentnovelopportunitiestoinvestigatemolecularevolutionaryandfunctionalgenetic processes.Oneprominentexampleofthisistheevolutionofneo-sexchromosomes,whichcan arisefromthefusionofanautosomewithanexistingandwell-differentiatedallosome.This effectivelyinstantaneoustransformationofaformerlyautosomalsetofgenesintosex-linked lociisfertilegroundforcomparativeanalysesaimedatunderstandingthedistinctsetof evolutionaryforcesactingonsexchromosomesrelativetoautosomes[3-6].Furthermore, whentherelevanttaxaalsohappentobetractablegeneticmodelsystems,thereisopportunity toexplorethefunctionalandmechanisticchangesassociatedwithsexchromosomeevolution. Thecongruenceofneo-sexchromosomesexistinginamodelsystemisrelativelyrare,although therearesomenotableexamples. Numerousindependentoriginsofneo-sexchromosomesareknowninDrosophilafruit flies,whererecentworkhasrevealedmuchabouttheevolutionaryandfunctionaldynamicsof theseunusualsequences[3,7-11].Substantialinsightshavealsocomefromsticklebackfish, whereneo-sexchromosomesappeartoplayanimportantroleinreproductiveisolation betweenincipientspecies[12-14].Lookingbeyondtheseestablishedmodelsystems,therapid expansionofgenomictechnologieshasallowedextensiveanalysesofgenecontent,sex-biased geneexpression,dosagecompensation,andsequencedivergenceforrecentlyevolvedsex chromosomesamongaverydiversesetoforganisms.Thisincludes,forexample,severalinsect lineages[Teleopsidflies,agrasshopper,andStrepsiptera[15-17]],vertebrates[mammalsand bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. birds[4,18,19],andplants[SileneandRumexgenera[20-22]].Aclearconsensusemerges fromthisresearchthatthelackofrecombinationassociatedwithsexchromosomescatalyzesa cascadeofevolutionarychangesinvolvingthedegenerationofoneallosome,theaccumulation ofgeneswithsex-biasedexpression,increasedevolutionaryrates,and(often,butnotalways) theacquisitionofdosagecompensation.Yetmanyofthedetailsinthisprocessremainelusive andunresolved,includingtherateofallosomedivergence,theroleofpositiveselectionversus drift,theimportancesex-specificselection,andthemechanismsunderlyingdosage compensation(orthereasonsforitsabsence).Itisthereforeimportanttocontinuallyidentify newopportunitiesfornovelinsightintotheevolutionofsexchromosomes. Overwhelmingly,researchonsexchromosomesoccursinmale-heterogametic(XY) species[5,23-25].Thisappearstobeparticularlytrueforneo-sexchromosomes,where contemporarygenomicanalysesofneo-Zorneo-Wchromosomesarecurrentlylacking[with onenotableexceptionforbirds[4]].Thisimbalanceisunfortunate,asZWsexdetermination replacesmale-specificselectionwithfemale-specificselectionduringtheevolutionof heterogamety,offeringanovelframeworkforelucidatingsexchromosomeevolution.What prospectsarethereforimprovingthissituation?Birdsarethemostprominentvertebratetaxon thatisfemale-heterogametic,butitappearsthatavianneo-sexchromosomesarequiterare, andabsentfromprominentmodelspecies(e.g.,chicken,zebrafinch)[26,27].Fishesand squamatesseemtobefarmorelabileinsex-chromosomeconstitution,withnumerous independenttransitionsbetweenmaleandfemale-heterogametyandrelativelyfrequentsexautosomefusions[28],thustherearepotentiallygreatopportunitiesinthesetaxa.However, noobviouslytractableZWmodelsystemwithneo-sexchromosomesisyetapparentforthese lineages. Formanyreasons,Lepidoptera(mothsandbutterflies)maybethemostpromising female-heterogametictaxonforstudyingneo-sexchromosomes.SyntenyisunusuallywellconservedinLepidoptera[29-31],yettherearealsonumerousknownexamplesof independentlyevolvedneo-Zandneo-Wchromosomes,severalofwhichhavebeenwellcharacterizedcytogenetically[6,32-34].Furthermore,comparativegenomicresourcesinthis insectorderaresubstantialandgrowingquickly(www.lepbase.org). Inthiscontext,wereportthefortuitousdiscoveryofaneo-Zchromosomeinthe monarchbutterfly,Danausplexippus,andcloselyrelatedspecies.Monarchbutterflies, renownedfortheirannualmigrationacrossNorthAmerica,alreadyhaveastrongprecedentas amodelsysteminecology[35].Recentlymonarchshaveemergedasamodelsystemfor genomebiology,withawell-assembledreferencegenome,extensivepopulationresequencing data,andaprecedentforgenomeengineering[36-38].Thediscoveryofaneo-Zchromosome substantiallyenrichesthevalueofthisspeciesasaresearchmodelingenomebiologyandlays thefoundationforextensivefutureinsightsintotheevolutionandfunctionaldiversityofsex chromosomes. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Results IdentifyingZ-linkedscaffoldsinD.plexippus WeidentifiedZ-linkedscaffoldsintheD.plexippusgenomeassembly[36,39]by comparingsequencingcoveragefrommaleandfemalesamples.ZchromosomeDNAcontentin malesshouldbetwicethatinfemales,whileautosomesshouldhaveequalDNAcontent betweensexes.Thusacorrespondingtwo-folddifferenceinsequencingcoverageisexpected betweensexesfortheZchromosome,butnotautosomes,andcanbeusedtoidentifyZ-linked scaffolds[16,40,41].Ahistogramofmale:femaleratiosofmediancoverageclearlyidentifies twoclustersofscaffolds(Fig.1).Onelargeclusteriscenteredaroundequalcoveragebetween sexes(Log2M:F=0)andasecond,smallerclusteriscenteredaroundtwo-foldgreatercoverage inmales(Log2M:F=1).WecanthusclearlydistinguishtheZ-linkedscaffoldsasthosewith Log2(M:F)>0.5,withtheremainderofthescaffoldspresumedtobeautosomal. Onescaffold,DPSCF300028,appearedtohaveanintermediatecoverageratio,fallingat Log2M:F≈0.7.Onelikelyexplanationforsuchintermediatevaluesisthatthescaffoldisa chimeraofZ-linkedandautosomalsequencearisingfromanerroringenomeassembly[41].In thisscenario,onlyaportionofthescaffoldisZ-linkedandgivesatwo-folddifferencein coveragebetweensexes;theremainingautosomalfractionofthescaffoldyieldsequal coverages.Theresultingestimateofaveragecoveragefortheentirescaffoldthenfallsatan intermediatevaluebetweenexpectationsforZorautosomalscaffolds.Thisisclearlytruefor DPSCF300028,asrevealedbyexaminingbasepair-levelsequencingcoverageacrossthescaffold (Fig.2A).Whileaveragemalecoverageisconsistentacrosstheentirelengthofthescaffold, femalecoverageexhibitsacleartransitionbetweencoverageequaltomales(theautosomal portion)andcoverageonehalfthatofmales(theZ-linkedportion).Indeed,therearetwosuch transitionsinscaffoldDPSCF300028,whichweestimatetooccurat0.76Mbpand1.805Mbp, creatinga“sandwich”ofoneZsegmentflankedbyautosomalsegments. Orthologcountslinkscaffoldstochromosomes. Lepidopterashowaveryhighlevelofconservedsyntenyacrosssubstantialevolutionary divergences[29-31].ThusitispossibletousecountsoforthologousgenestoassignD. plexippusscaffoldstolinkagegroups(i.e.chromosomes)delineatedinothermothorbutterfly species.WegeneratedpredictedorthologsbetweenD.plexippusandthreeotherreference specieswheregeneticlinkagemappinghasbeenusedtoassigngenomicscaffoldsto chromosomes:Melitaeacinxia(N=31),Heliconiusmelpomene(N=21),andBombyxmori(N=28) [29,30,42].M.cinxiaandH.melpomenearebothnymphalidbutterfliesequallydivergedfrom D.plexippus,whilethesilkmoth,B.mori,isdistinctlymoredivergent[43,44]. ToassignD.plexippusscaffoldstochromosome,wetabulatedperscaffoldthecountsof one-to-onereferencespeciesorthologsperreferencespecieschromosome.D.plexippus scaffoldswerethenassignedtothereferencechromosomewiththemaximumcountof orthologs.Forafewscaffolds,atieoccurredinmaximumorthologcountperreference chromosome,inwhichcasethescaffoldwasremovedfromfurtheranalysis;atmostthis occurredforonly14scaffoldsperreferencespeciesandusuallyinvolvedsmallscaffolds bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. harboringfewerthan5orthologs.Typicallythismethodyieldedaclear“best”reference chromosomalassignmentforeachD.plexippusscaffold. Thismethodofortholog-countchromosomal“lift-over”resultedinputative chromosomalassignmentsfor>90%ofD.plexippusgenesrelativetoeachreferencespecies (Table1,SupplementaryTableS1).Also,atleast4500orthologousgeneswereco-localizedto chromosomebetweenD.plexippusandeachreferencespecies.Havingseveralthousand orthologsmappedtochromosomeinD.plexippusandareferencespeciespresentsthe opportunitytoexaminetheextentofchromosomalrearrangementsandgenemovement betweenthetwospecies.HereweprimarilyreportthecomparisonwithM.cinxiabecausethis speciesisbelievedtoretaintheancestrallepidopterankaryotypeof31chromosomes[29]. Furthermore,thiscountofchromosomesisclosesttothatreportedforDanausbutterflies (N=30),indicatingitislikelythemostsimilarkaryotypetoD.plexippus[45].H.melpomeneand B.moriareknowntohavemorederivedkarytoypesinvolvingseveralchromosomalfusions relativetoM.cinxia;detailsofcomparisonstothesetwospeciesarereportedinthe supplementarycontentandprovidecomparablesupportfortheprimaryfindingsreported here. Figure3summarizesthecross-tabulationofchromosomallinkagefor>4500orthologs betweenM.cinxiaandD.plexippus.Theoverwhelmingmajorityoforthologsfallonthe diagonal,indicatingsubstantialconservationofchromosomallinkageandrelativelylittlegene shuffling,ashasbeenreportedelsewhereforLepidoptera[29-31].Thetwomostnotable exceptionstothispatternbothinvolvetheZchromosome(Chr1).Inonecase[McChr9, DpChr1]wecouldanticipatethisbecauseofthepreviouslyidentifiedchimericscaffold, DPSCF300028.Thisscaffoldharbors34orthologsassignedtoMcChr1and23orthologsassigned toMcChr9,consistentwiththechimericnatureofthescaffoldrevealedfrommale:female coverageratios(Fig2A). Thesecondcase[McChr1,DpChr21]appearedtoariseentirelyfromasinglescaffold, DPSCF300001,thelargestscaffoldintheD.plexippusv3assembly.Thisscaffoldcarried107 orthologsassignedtoMcChr21,28orthologsassignedtoMcChr1,13orthologsassignedto McChr23,andafewotherorthologsassignedtootherautosomes.Notably,despitethelarge numberofapparentlyautosomalorthologs,theaveragemale:femalecoverageratiofor DPSCF300001wasconsistentwithitbeingZ-linked[Log2(M:Fcoverage)=0.92].Nonetheless, weplottedcoverageacrossthechromosomeanddetecteda~1Mbpportionatthe3’endof thescaffoldwithcoveragepatternsconsistentwithbeinganautosome(Fig2C).TheM.cinxia orthologsinthisautosomalportionwerelinkedexclusivelytoMcChr23.Therewasnotan obviousshiftinsequencingcoveragebetweensexestoindicateamisassembledZ-autosome chimerainvolvingMcChr21.Rather,itappearedthatnearlytheentiretyofscaffold DPSCF300001hadtwicethecoverageinmalesthaninfemales,consistentwiththeentire scaffoldbeingZ-linked,bothforregionsapparentlyhomologoustoMc1(Z)andMcChr21. Aneo-ZchromosomeinD.plexippus TheobservationthatasubstantialportionofscaffoldDPSCF300001wasZ-linkedand homologoustoMcChr21,whileanotherlargesectionofthesamescaffoldwashomologousto McChr1(i.e.,McChrZ),ledustohypothesizethatasingleZ-autosomefusioncouldexplainthe bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. karyotypicdifferencesbetweenD.plexippus(N=30)andM.cinxia(N=31).Tofurtherinvestigate thishypothesisofamajorevolutionarytransitioninsexchromosomecompositioninthe Danauslineage,weexaminedthechromosomalassignmentsforallMonarchscaffolds identifiedasZ-linkedviasequencingcoverageratios(Z-covscaffolds).Specifically,weidentified theuniquesetofreferencechromosomestowhichZ-covscaffoldswereassigned,andthen examinedthemale:femalecoverageratioforallscaffoldsassignedtothosereference chromosomes.InthecaseofM.cinxiaasthereference,allZ-covscaffoldswereassignedeither toMcChr1orMcChr21(Fig.4;comparableresultswereobtainedforH.melpomeneandB. mori,SupplementaryFig.S2).ThisresultprovidesfurtherevidencethattheZinD.plexippusisa neo-sexchromosomereflectingthefusionoftheancestralZchromosomewithanautosome homologoustoMcChr21. ThisanalysisintersectingZ-covscaffoldswithhomologytoM.cinxiarevealedtwo scaffoldsthatdidnotfitwiththeexpectedpatternofsequencingcoverage(Fig.4).First, scaffoldDPSCAF300044wasassignedtoMcChr1(Z)buthadLog2M:F≈0.25,muchmorelike otherautosomesthanotherZ-linkedchromosomes.ThisscaffoldhadsevenZ-linkedorthologs and4autosomal,suggestinganotherchimericscaffold.Indeed,examiningcoverageacrossthe scaffoldrevealedacleartransitionincoverageaspreviouslyobservedforDPSCF300001and DPSCF300028(Fig2B).Thusthelowmale:femalecoverageratioforthisscaffoldistheartifact ofanassemblyerror.Againwewereabletopartitionthescaffoldintotwosections,one autosomalandoneZ-linked,withabreakpointestimatedat0.29Mbp. DPSCF300403wastheotherscaffoldwheretheM:Fratioofmediancoveragewas inconsistentwiththehypothesisofaneo-Zchromosome.Thisscaffoldwasassignedto McChr21buthadanautosomalcoverageratio.Coveragealongthechromosomewas consistentwithitbeingentirelyautosomal(SupplementaryFigureS3).Inthiscasethescaffold carriedonlyasingleone-to-oneorthologousgene(andonly5protein-codinggenestotal),so theassignmenttoMcChr21istenuousandlikelyinaccurate.Thisscaffoldalsohadasingleoneto-oneorthologfoundinB.mori,andnoneidentifiedinH.melpomene.Wethereforeconsider thisscaffoldlargelyuninformativeconcerningthepresenceofaneo-ZinD.plexippus. Theneo-ZchromosomeexistsintheMonarch’scloserelatives TheMonarchpopulationgenomicdatasetofZhaetal.(2014)alsocontainedmaleand femaleresequencingsamplesforfourcloselyrelatedcongeners:D.gilippus,D.chrysippus,D. erippus,andD.eresimus.Thispresentedtheopportunitytoassesswhetherthisneo-Zexistsin thesespeciesinadditiontoMonarch.PublishedreportsofanN=30karyotypeinsomeofthese speciesleadstothestrongpredictionthattheyallalsocarrythesameneo-Zchromosomal arrangement[45].Asexpected,maleversusfemalesequencecoverageanalysisdoesclearly showthesamescaffoldshomologoustobothMcChr1andMcChr21ashavingsequencing coverageconsistentwithaneo-Z(Fig.5).Thusitappearsthattheoriginofthisneo-Zpredates thediversificationofthegenusDanaus. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Annotatingchromosomallinkage Thecombinationofsequencingcoverageanalysisandcomparative“liftover”allowedus toprovisionallyassignmostgenestochromosomesinD.plexippus.GenesfallingonZ-cov scaffolds,orwithintheportionassessedasZ-linkedfornotedchimericscaffolds,havebeen assignedtotheZchromosome.WefurtherpartitionedtheseZ-linkedgenesintobeingonthe ancestral(anc-Z)orneo(neo-Z)portionoftheZ,basedonscaffoldhomologytoreference chromosomes.InthecaseofDPSCF300001,welocalizedthefusionpointbetweenanc-Zand neo-ZbyaligningM.cinxiaandH.melpomenescaffoldsfromtheZ(HmChr21,McChr1)or relevantautosome(HmChr2,McChr21).Alignmentswithbothspecieswereconsistentin placingthefusionpointatapproximately3.88Mbp(SupplementaryFig.S4).Otherwise,genes andscaffoldswereassignedtochromosomesbaseddirectlyontheresultsofthe“lift-over” relativetoM.cinxia.Table2givesatabulatedsummaryofresults,whileresultsforevery proteincodinggeneareprovidedinSupplementaryTableS3. Discussion Thisdiscoveryofaneo-ZchromosomeinDanausbutterfliesandourdiscriminationof genesfallingontheancestralversusrecentlyautosomalportionsarefundamentalobservations thatprovidethefoundationforahostoffutureinferences.Theseresultscreatenovel opportunitiestoaddressratesofmolecularevolution,theevolutionofdosagecompensation, thepatternofallosomedivergence,andmanyotherimportantquestionsinsexchromosome biology,allinanemerginggeneticandgenomicfemale-heterogameticmodelsystem. Itseemsevidentfromtheresultspresentedherethatifthereremainsaneo-W chromosome(i.e.,adegradedhomologoftheneo-Zsegment),itmustbesubstantiallydiverged fromtheneo-Z.Weinferthisfromtheveryconsistent2:1coverageratioobservedonscaffold regionscorrespondingtoMcChr21.Iftheneo-Wretainedsubstantialhomologytotheneo-Z, wewouldexpectmanysequencingreadsemanatingfromtheneo-Wtoaligntotheneo-Z,and shiftthisratiotowardsequality.Thisevidentlydoesnotoccur,stronglyindicatingsubstantial divergencebetweentheneo-Zandanyneo-Wsequencethatisretained.Indeed,itisnoteven clearatthispointwhetherthereisanyneo-Wchromosomeatall.Thisisanobviouspointfor immediateinvestigation,perhapsbestapproachedusingcytogenetictechniques[6,32]. Brownetal.(2004)reportchromosomecountsfrommalebutterfliesofseveralspecies fromthreegeneraintheDanainibutterflytribe:Danaus(N=30),Anetia(N=31),andLycorea (N=30).ThemostrecentphylogeneticstudyofthesespeciesreportsAnetiawithinthemost basallydiversifyinglineageinthisgroup[46].SoitistemptingtospeculatethattheZ-autosome fusionreportedhereforDanausoccurredwithintheDanaini,afterthedivergencefromAnetia, whichhas31chromosomes,presumablyreflectingasharedancestralkaryotypewithMelitaea. However,thesamephylogeneticstudyreportsAnetiaassistertoLycorea(N=30),withinthe samebasallysplittinglineage.Becausenootherchromosomecountsareknownforthe numerousspeciesatintermediatedivergencesbetweenDanausandthe(Anetia,Lycorea) lineage,weareleftwithtwoplausiblescenarios,assumingthereportedphylogenetic relationshipsareaccurate.Inonecase,Anetiaindeedretainstheancestralkaryotypewhile fusionsindependentlyoccurredinLycoreaandalsointhelineageleadingtoDanaus.The alternativecaseisthataZ-autosomefusionpredatestheoriginsofallDanaini,witha bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. subsequentchromosomalfissioninAnetia,producingoneextrachromosomeforN=31,a chromosomecountthatisconvergentbutnothomologoustoMelitaea.Resolvingthesetwo possibilitieswilllikelyrequireacomparativeanalysisofZ-chromosomehomologywithinthe Danaini. InanalyzingpatternsofchromosomalfusioninH.melpomeneandB.morirelativetoM. cinxia,Aholaetal.(2014)reportasignificanttendencyforalimitedsetofancestral chromosomes–particularlythesmallestones–tobeinvolvedinchromosomalfusionevents. NeithertheancestralZnorMcChr21areamongthesesmall,repeatedlyfusedchromosomes. Thusthechromosomalfusionreportedheredoesnotfitneatlywiththepatterndescribedby Aholaetal.Nonetheless,HmChr2(homologoustoMcChr21)isthesecondsmallest chromosomethatremainsunfusedbetweentheselineages[47].Soitisalsodifficulttoargue stronglythatthisZ-autosomefusioninDanausisastrikingcontrasttothetrendof chromosomalfusionsinvolvingsmallchromosomes. Conclusion Wehaveusedacombinationofgenomesequencingcoverageandcomparativegenomic analysistodemonstratethatDanausbutterfliesharboraneo-Zchromosomeresultingfromthe fusionoftheancestralZchromosomeandanautosomehomologoustoChr21inM.cinxia.Our analysisalsoidentifiedandresolvedseveralZ-autosomechimericscaffoldsinthemostrecent assemblyoftheD.plexippusgenome.Thisdiscoveryandprovisionalassignmentof chromosomelinkagefor>90%ofD.plexippusgenespavesthewayformyriadanddiverse investigationsintosexchromosomeevolution,whicharelikelytobeofdistinctimportance giventheincreasingprominenceofmonarchbutterflyasafemale-heterogameticmodel speciesforfunctionalandevolutionarygenomics. Methods Sequencingcoverageanalysis IlluminashotgungenomicDNAsequencingdataforthreemaleandthreefemaleD. plexippusindividualswereselectedforanalysisfromsamplessequencedbyZhanetal.(2014) [38].Male-femalepairswereselectedonthebasisofapproximatelyequalsequencing coverage.SampleswerealignedtotheD.plexippusversion3genomeassemblywithbowtie2 (v2.1.0),usingthe“verysensitivelocal”alignmentoption[39,48].Theresultingalignments wereparsedwiththegenomecovandgroupbyutilitiesintheBedToolssoftwaresuite(v2.17.0) toobtainaper-basemediancoveragedepthstatisticforeachscaffold[49].Genomic sequencingdatafromotherDanausspecies,alsogeneratedbyZhanetal.2014,werealigned tothesameassemblyusingStampy(v1.0.22)(defaultparameters,exceptfor substitutionrate=0.1)[50].Detailsofallsampleidentity,includingGenBankSRAaccessions,are giveninSupplementaryTableS2. Coverageanalysescomparingmalesandfemaleswerelimitedtoscaffoldsoflengths equaltoorgreaterthantheN90scaffold(160,499bp)[39].Also,incompletecaseswere bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. excluded(i.e.,scaffoldswithnoreadsfromoneormoresamples).Intotal,140scaffoldswere excluded,leaving5,257scaffoldsanalyzed.Foreachsample,eachscaffold’smediancoverage wasdividedbythemeanacrossallscaffoldmediancoverages,therebynormalizingfor differencesinoverallsequencingdepthbetweensamples.Samplesweregroupedbysexand theper-scaffoldmeanofnormalizedcoveragedepthwascomparedbetweensexes,formulated asthelog2ofthemale:femalecoverageratio.Autosomalscaffoldsareexpectedtoexhibit equalcoveragebetweensexes,yieldingalog2ratioofzero.Zlinkedscaffoldsshouldhavea ratioofone,duetothetwo-foldgreaterrepresentationinmales.Manipulation,analysis,and visualizationofcoveragedatawasperformedusingcustomRscripts[51]. Forselectscaffoldswithintermediatemediancoverageratios,weusedBedtools genomecovtocalculateper-basecoverage,inordertoidentifypotentialassemblyerrors producingZ-Autosomalchimericscaffolds.Foreachsample,coverageperbasewasdividedby themeanofallscaffoldmediancoverages,thusnormalizingforoverallsequencingdepth.The normalizedcoverageperbasewasaveraged(mean)withinsexandvisualizedalongthelength ofthescaffoldbyusingthemedianofa5kbpslidingwindow,shiftedby1kbpsteps. PointestimatesforZ-autosomalbreakpointsinchimericscaffoldsweregeneratedusing aslidingwindowanalysisofmale:femalecoverageratios.Putativebreakpointswereobtained asthemaximumoftheabsolutedifferencebetweenadjacentnon-overlappingwindows.A windowof150Kbpwith10kbpstepswasusedforDPSCF300001andthe5’breakpointof DPSCF30028.Awindowof10kbpwith1kbpstepswasusedforDPSCF30044andinasecond, localizedanalysisbetween1.5Mbandthe3’terminusofDPSCF30028tolocalizethesecond,3’ breakpoint. Orthology-basedchromosomalassignmentsforD.plexippusscaffolds. PutativechromosomallinkagewaspredictedforD.plexippusscaffoldsrelativetothe genomeassembliesofthreereferencespecies,M.cinxia,B.mori,andH.melpomene,basedon countsoforthologousgenes[29,30,42].OrthologousproteinswerepredictedbetweenD. plexippusandeachreferencespeciesusingtheProteinorthopipeline[52].Usingonly1-to-1 orthologs,wetabulatedperD.plexipppusscaffoldthenumberofgenesmappedtoeach chromosomeinthereferencespecies.EachD.plexippusscaffoldwastentativelyassignedto thechromosomewiththehighestcountoforthologsinthereferencespecies.Scaffoldswere excludedfromanalysiswhenmaximumorthologcountwastiedbetweentwoormore scaffolds,thoughthissituationwasrareandalwaysinvolvedscaffoldswithlowcountsof (orthologous)genes. PointestimateoftheZ-autosomefusion ThefusionpointinMonarchbetweenancestrallyZandautosomalsegmentswaslocalizedby aligningthehomologousH.melpomeneorM.cinxiachromosomesagainstMonarchscaffold DPSCF300001[29,47].Alignmentswerebasedonsix-frameaminoacidtranslationsusingthe PROmeralgorithmandvisualizedwithmummerplot,bothfromtheMUMmersoftwarepackage (v3.1)[53].WeinitiallyalignedthecompletesetofscaffoldsfromtheZ(HmChr21,McChr1)or relevantautosome(HmChr2,McChr21),yieldingapreliminaryindicationthattheZ-Afusion pointoccurredat~4MbponDPSCF300001.Torefineandbettervisualizethisphenomenon, “pseudo-assemblies”werecreatedforeachchromosomeusingqueryscaffoldsproducing>500 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. bpoftotalalignedcoverageonDPSCF300001.Selectedqueryscaffoldswereconcatenatedinto asinglefastaentry,withorderingbasedontargetalignmentpositions.Foreachspecies,theZ andautosomalpseudo-assemblieswereco-alignedtoDPSCF300001.Thetransitionpoint betweencontiguousalignmentsofthetwopseudo-assemblieswasinterpretedasthe approximatelocationoftheZ-AinMonarch. Acknowledgements ThismanuscriptisdedicatedtoChipTaylor,AnnRyan,andthemanyhard-workingmembersof MonarchWatch.org.JimMalletandJohnDaveyprovidedhelpfulcommentsonthiswork.This researchwassupportedbyNSF-DEB1457758(toJ.R.W.).Thecomputingforthisprojectwas performedontheCommunityClusterattheCenterforResearchComputingattheUniversityof Kansas. Authorcontributions:JRWconceivedanddesignedresearch,performedanalyses,anddrafted themanuscript.AJMperformedanalysesandhelpeddraftthemanuscript.Bothauthorsread andapprovedthefinalmanuscript. CompetingInterests:Theauthors(JRW&AJM)declarenocompetinginterests. Additionaldatafiles: Monarch_neoZ_Gene-Scaff.xlsxcontainspredictedchromosomallinkage,wheredetermined, forallD.plexippusproteincodinggenes. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. WorksCited 1.LynchM:TheOriginsofGenomeArchitecture.Sunderland,MA:SinauerAssociatesIncorporated;2007. 2.SoltisP,SoltisDE:PolyploidyandGenomeEvolution.NewYork,NY:SpringerScience&BusinessMedia;2012. 3.BachtrogD,JensenJD,ZhangZ:AcceleratedadaptiveevolutiononanewlyformedXchromosome.PLoSBiol 2009,7:e82. 4.PalaI,HasselquistD,BenschS,HanssonB:Patternsofmolecularevolutionofanavianneo-sexchromosome. MolecularBiologyandEvolution2012,29:3741–3754. 5.BachtrogD:Y-chromosomeevolution:emerginginsightsintoprocessesofY-chromosomedegeneration.Nat RevGenet2013,14:113–124. 6.ŠíchováJ,NguyenP,DalíkováM,MarecF:ChromosomalEvolutioninTortricidMoths:ConservedKaryotypes withDivergedFeatures.PLoSONE2013,8:e64520. 7.CountermanBA,Ortíz-BarrientosD,NoorMAF:Usingcomparativegenomicdatatotestforfast-Xevolution. Evolution2004,58:656–660. 8.FloresSV,EvansAL,McAllisterBF:Independentoriginsofnewsex-linkedchromosomesinthemelanicaand robustaspeciesgroupsofDrosophila.BMCEvolBiol2008,8:33. 9.ZhouQ,EllisonCE,KaiserVB,AlekseyenkoAA,GorchakovAA,BachtrogD:TheEpigenomeofEvolving DrosophilaNeo-SexChromosomes:DosageCompensationandHeterochromatinFormation.PLoSBiol2013, 11:e1001711. 10.BrownEJ,BachtrogD:ThechromatinlandscapeofDrosophila:comparisonsbetweenspecies,sexes,and chromosomes.GenomeRes2014,24:1125–1137. 11.NozawaM,FukudaN,IkeoK,GojoboriT:Tissue-andStage-DependentDosageCompensationontheNeo-X ChromosomeinDrosophilapseudoobscura.MolecularBiologyandEvolution2014,31:614–624. 12.KitanoJ,RossJA,MoriS,KumeM,JonesFC,ChanYF,AbsherDM,GrimwoodJ,SchmutzJ,MyersRM,Kingsley DM,PeichelCL:Aroleforaneo-sexchromosomeinsticklebackspeciation.Nature2009,461:1079–1083. 13.WhiteMA,KitanoJ,PeichelCL:PurifyingSelectionMaintainsDosage-SensitiveGenesduringDegenerationof theThreespineSticklebackYChromosome.MolecularBiologyandEvolution2015,32:1981–1995. 14.YoshidaK,MakinoT,YamaguchiK,ShigenobuS,HasebeM,KawataM,KumeM,MoriS,PeichelCL,ToyodaA, FujiyamaA,KitanoJ:SexChromosomeTurnoverContributestoGenomicDivergencebetweenIncipient SticklebackSpecies.PLoSGenet2014,10:e1004223. 15.BakerRH,WilkinsonGS:ComparativeGenomicHybridization(CGH)RevealsaNeo-XChromosomeandBiased GeneMovementinStalk-EyedFlies(GenusTeleopsis).2010:1–14. 16.MahajanS,BachtrogD:PartialDosageCompensationinStrepsiptera,aSisterGroupofBeetles.Genome BiologyandEvolution2015,7:591–600. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 17.Palacios-GimenezOM,MartiDA,Cabral-de-MelloDC:Neo-sexchromosomesofRonderosiabergi:insightinto theevolutionofsexchromosomesingrasshoppers.Chromosoma2015,124:353–365. 18.ZhouQ,WangJ,HuangL,NieW-H,WangJ-H,LiuY,ZhaoX-Y,YangF-T,WangW:Neo-sexchromosomesinthe blackmuntjacrecapitulateincipientevolutionofmammaliansexchromosomes.GenomeBiol2008,9:R98. 19.MurataC,KurokiY,ImotoI,TsukaharaM,IkejiriN,KuroiwaA:Initiationofrecombinationsuppressionand PARformationduringtheearlystagesofneo-sexchromosomedifferentiationintheOkinawaspinyrat, Tokudaiamuenninki.BMCEvolBiol2015,15:234. 20.PapadopulosAST,ChesterM,RidoutK,FilatovDA:RapidYdegenerationanddosagecompensationinplant sexchromosomes.ProceedingsoftheNationalAcademyofSciences2015,112:13021–13026. 21.CharlesworthD:Plantcontributionstoourunderstandingofsexchromosomeevolution.NewPhytol2015, 208:52–65. 22.HoughJ,HollisterJD,WangW,BarrettSCH,WrightSI:GeneticdegenerationofoldandyoungYchromosomes inthefloweringplantRumexhastatulus.ProceedingsoftheNationalAcademyofSciences2014,111:7713–7718. 23.EllegrenH:Sex-chromosomeevolution:recentprogressandtheinfluenceofmaleandfemaleheterogamety. NatRevGenet2011,12:157–166. 24.ParschJ,EllegrenH:Theevolutionarycausesandconsequencesofsex-biasedgeneexpression.NatRevGenet 2013,14:83–87. 25.VicosoB,CharlesworthB:EvolutionontheXchromosome:unusualpatternsandprocesses.NatRevGenet 2006,7:645–653. 26.PalaI,NaurinS,StervanderM,HasselquistD,BenschS,HanssonB:Evidenceofaneo-sexchromosomein birds.Heredity2012,108:264–272. 27.NandaI,SchlegelmilchK,HaafT,SchartlM,SchmidM:SyntenyconservationoftheZchromosomein14avian species(11families)supportsaroleforZdosageinaviansexdetermination.CytogenetGenomeRes2008, 122:150–156. 28.PennellMW,KirkpatrickM,OttoSP,VamosiJC,PeichelCL,ValenzuelaN,KitanoJ:Yfuse?Sexchromosome fusionsinfishesandreptiles.PLoSGenet2015,11:e1005237. 29.AholaV,LehtonenR,SomervuoP,SalmelaL,KoskinenP,RastasP,VälimäkiN,PaulinL,KvistJ,WahlbergN, TanskanenJ,HornettEA,FergusonLC,LuoS,CaoZ,deJongMA,DuplouyA,SmolanderO-P,VogelH,McCoyRC, QianK,ChongWS,ZhangQ,AhmadF,HaukkaJK,JoshiA,SalojärviJ,WheatCW,Grosse-WildeE,HughesD,etal.: TheGlanvillefritillarygenomeretainsanancientkaryotypeandrevealsselectivechromosomalfusionsin Lepidoptera.NatureCommunications2014,5:4737. 30.HeliconiusGenomeConsortium:Butterflygenomerevealspromiscuousexchangeofmimicryadaptations amongspecies.Nature2012,487:94–98. 31.PringleEG,BaxterSW,WebsterCL,PapanicolaouA,LeeSF,JigginsCD:Syntenyandchromosomeevolutionin thelepidoptera:evidencefrommappinginHeliconiusmelpomene.Genetics2007,177:417–426. 32.NguyenP,SýkorováM,ŠíchováJ,KůtaV,DalíkováM,ČapkováFrydrychováR,NevenLG,SaharaK,MarecF: Neo-sexchromosomesandadaptivepotentialintortricidpests.ProceedingsoftheNationalAcademyofSciences 2013,110:6931–6936. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 33.YoshidoA,SaharaK,MarecF,MatsudaY:Step-by-stepevolutionofneo-sexchromosomesingeographical populationsofwildsilkmoths,Samiacynthiassp.Heredity2010,106:614–624. 34.TrautW,SaharaK,MarecF:SexchromosomesandsexdeterminationinLepidoptera.SexDev2007,1:332– 346. 35.OberhauserKS,SolenskyMJ:MonarchButterflyBiology&Conservation.Ithaca,NY:CornellUniversityPress; 2004. 36.ZhanS,MerlinC,BooreJL,ReppertSM:TheMonarchButterflyGenomeYieldsInsightsintoLong-Distance Migration.Cell2011,147:1171–1185. 37.MerlinC,BeaverLE,TaylorOR,WolfeSA,ReppertSM:Efficienttargetedmutagenesisinthemonarch butterflyusingzinc-fingernucleases.GenomeRes2013,23:159–168. 38.ZhanS,ZhangW,NiitepõldK,HsuJ,HaegerJF,ZaluckiMP,AltizerS,deRoodeJC,ReppertSM,KronforstMR: Thegeneticsofmonarchbutterflymigrationandwarningcolouration.Nature2014,514:317–321. 39.ZhanS,ReppertSM:MonarchBase:themonarchbutterflygenomedatabase.NucleicAcidsResearch2012, 41:D758–D763. 40.VicosoB,EmersonJJ,ZektserY,MahajanS,BachtrogD:ComparativeSexChromosomeGenomicsinSnakes: Differentiation,EvolutionaryStrata,andLackofGlobalDosageCompensation.PLoSBiol2013,11:e1001643. 41.MartinSH,DasmahapatraKK,NadeauNJ,SalazarC,WaltersJR,SimpsonF,BlaxterM,ManicaA,MalletJ, JigginsCD:Genome-wideevidenceforspeciationwithgeneflowinHeliconiusbutterflies.GenomeRes2013, 23:1817–1828. 42.InternationalSilkwormGenomeConsortium:Thegenomeofalepidopteranmodelinsect,thesilkworm Bombyxmori.InsectBiochemMolBiol2008,38:1036–1045. 43.WahlbergN,LeneveuJ,KodandaramaiahU,PeñaC,NylinS,FreitasAVL,BrowerAVZ:Nymphalidbutterflies diversifyfollowingneardemiseattheCretaceous/Tertiaryboundary.ProceedingsoftheRoyalSocietyB: BiologicalSciences2009,276:4295–4302. 44.KawaharaAY,BreinholtJW:Phylogenomicsprovidesstrongevidenceforrelationshipsofbutterfliesand moths.ProceedingsoftheRoyalSocietyB:BiologicalSciences2014,281:20140970–20140970. 45.BrownKS,SchoultzVonB,SuomalainenE:ChromosomeevolutioninNeotropicalDanainaeandIthomiinae (Lepidoptera).Hereditas2004,141:216–236. 46.BrowerAVZ,WahlbergN,OgawaJR,BoppréM,Vane-WrightRI:Phylogeneticrelationshipsamonggeneraof danainebutterflies(Lepidoptera:Nymphalidae)asimpliedbymorphologyandDNAsequences.Systematicsand Biodiversity2010,8:75–89. 47.DaveyJW,ChouteauM,BarkerSL,MarojaL,BaxterSW,SimpsonF,JoronM,MalletJ,DasmahapatraKK,Jiggins CD:MajorImprovementstotheHeliconiusmelpomeneGenomeAssemblyUsedtoConfirm10Chromosome FusionEventsin6MillionYearsofButterflyEvolution.G3(Bethesda)2016. 48.LangmeadB,SalzbergSL:Fastgapped-readalignmentwithBowtie2.NatMethods2012,9:357–359. 49.QuinlanAR,HallIM:BEDTools:aflexiblesuiteofutilitiesforcomparinggenomicfeatures.Bioinformatics 2010,26:841–842. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 50.LunterG,GoodsonM:Stampy:astatisticalalgorithmforsensitiveandfastmappingofIlluminasequence reads.GenomeRes2011,21:936–939. 51.RDevelopmentCoreTeam:R:ALanguageandEnvironmentforStatisticalComputing.2014. 52.LechnerM,FindeissS,SteinerL,MarzM,StadlerPF,ProhaskaSJ:Proteinortho:Detectionof(Co-)orthologsin large-scaleanalysis.BMCBioinformatics2011,12:124. 53.KurtzS,PhillippyA,DelcherAL,SmootM,ShumwayM,AntonescuC,SalzbergSL:Versatileandopensoftware forcomparinglargegenomes.GenomeBiol2004,5:R12. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Table1.SummaryofassigningD.plexippusgenesandscaffoldstochromosomesviaorthology “liftover”relativetoM.cinxia. 1:1orthologsidentified 6,740 1:1orthologsassignedtoM.cinxiachromosome 4,607(68.4%) ProteincodinggenesinD.plexippus 15,130 D.plexippusproteincodinggenesassignedtochromosome 14,129(93.4%) D.plexippusscaffoldsputativelyassignedtochromosomes 454 Table2.SummaryofprovisionalchromosomallinkageforD.plexippusproteincodinggenes, withchromosomalidentityreflectinghomologytoM.cinxia Chromosome 1 Anc-Z Neo-Z 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 NotAssigned NumberofGenes 1101 624 477 704 758 582 494 689 483 535 647 452 574 576 501 429 493 524 604 561 414 399 302 318 185 329 274 250 284 294 151 168 1055 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Figure1.Distributionofmediannormalizedmale:femalegenomicsequencingcoverage ratiosforD.plexippusversion3assemblyscaffolds.Onlyscaffoldsoflengthequaltoor greaterthantheN90scaffoldareshown.Thedottedlineat0.5representsthevalue usedtopartitionscaffoldsasautosomal(grey)orZ-linked(red). Figure2.Normalizedmaleandfemalecoveragealongthelengthofchimericscaffolds, for(A)DPSCF300028,(B)DPSCF300044,and(C)DPSCF300001.Coveragesareplottedas slidingwindows(width=5Kbp,step=1Kbp)ofmedianbasepairvalues.Theassociated male:femaleratioofcoverageforeachwindowisplottedasaredlinebelowthepairof sex-specificplots.AsterisksindicatetheestimatedbreakpointbetweenZlinkedand autosomalsegmentsofeachscaffold,asdeterminedbythemaximumdifferencein adjacent,non-overlappingwindowsofmale:femaleratio(seemethodsfordetails). Figure3.Chromosomalco-linkagebetweenD.plexippusandM.cinxiaforpredicted orthologousproteins. Figure4.Ratiosofmale:femalemediannormalizedgenomicsequencingcoverage plottedbyscaffoldlength.Scaffoldshomologousvia“liftover”proceduretoM.cinxia chromosomes1/Z(blue)and21(green)areplottedindistinctcolors.Dottedlines indicateexpectedvaluesforZ-linked(red)andautosomal(black)scaffolds. Figure5.Ratiosofmale:femalemediannormalizedgenomicsequencingcoverage plottedbyscaffoldlengthforfourspeciesofDanausbutterflies. 80 40 20 0 Frequency 60 Putative Autosomal scafffolds Putative Z−linked scaffolds −0.5 0.0 0.5 Log2( Male:Female coverage ) 1.0 1.5 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 9 ● ● ● ● ● ● ● 11 ● ● ● 15 ● ● 19 M. cinxia chromosome ● ● ● 17 ● ● ● ● 13 ● ● ● ● ● ● ● ● ● 10 ● ● ● ● ● ● ● 100 ● ● 7 ● ● ● ● ● ● ● ● ● 500 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 5 ● ● ● ● Number of genes ● ● ● ● 3 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1:5 putative D. plexippus chromosome Ortholog Chromosomal Co−localization: M. cinxia vs. D. plexippus 21 23 ● 25 27 29 ● 31 1 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. A 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300028 0 0.25 0.5 0.75 B 1 1.25 1.5 1.75 2 Scaffold Position (Mbp) mcov.smooth[, 2] 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300044 0 0.25 0.5 0.75 1 1.25 Scaffold Position (Mbp) C mcov.smooth[, 2] 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300001 0 0.5 1 1.5 2 2.5 3 3.5 Scaffold Position (Mbp) mcov.smooth[, 2] 4 4.5 5 5.5 6 M. cinxia reference chromosome ● 1 ● 21 ● Other ● ● ● ● ● ● ● ●● 0.0 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ●● ●● ●● ●● ● ●● ●● ●●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●●● ●●● ●●● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ●● ● ●● ● ●●● ● ● ●● ● ●● ●●●● ● ●● ● ●●●● ● ●●● ● ●● ● ●● ● ● ●● ● ● ●● ●●● ●● ● ● ●● ● ● ● ●●● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ●● ●● ● ● ● ● ●●● ● ● ● ●●● ● ●● ● ● ● ●●● ● ● ● ● ● ●● ●● ● ●●● ● ● ● ● ●● ● ● ● ● ● ● ●● ●●●● ●● ●● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ●● ●● ● ● ● ●● ●●●● ●● ● ● ●●● ●●● ● ● ● ●● ●●● ● ●●● ● ● ●●● ● ● ● ● ● ●● ● ●● ●● ● ● ●● ● ●● ● ● ● −0.5 Log2[ Male:Female coverage ] 1.0 ● ● 5.5 6.0 Log10[ Scaffold Length (bp) ] 6.5 7.0 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Macrosynteny: B. mori vs D. plexippus 27 ● ● ● 26 25 23 ● putative D. plexippus chromosome ● ● ● ● ● ● ● ● ● 20 ● ● 18 ● 17 ● ● ● ● ● ● ● ● ● ● ● ● ● 11 ● ● ● ● Number of genes ● ● ● ● ● 500 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 8 ● ● ● 6 ● ● ● 5 ● 4 ● 3 ● ● ● ● ● ● ● ● ● ● ● 1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● 13 15 17 ● ● ● ● 11 1 ● ● ● ● 1 2 3 4 5 6 7 8 9 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 10 ● ● ● 9 100 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 13 10 ● ● ● ● ● ● ● 14 2 ● ● ● ● ● ● ● 15 ● ● ● ● 19 7 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 21 12 ● ● ● ● 22 16 ● ● 24 ● ● ● ● 1:5 28 19 21 ● 23 25 27 B. mori chromosome Macrosynteny: H. melpomene vs D. plexippus 20 ● ● 19 putative D. plexippus chromosome 18 ● ● ● ● ● ● ● ● ● ● ● 17 ● 16 ● ● ● ● ● ● 15 14 13 ● ● ● ● ● ● 11 ● ● 9 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 500 ● ● ● ● ● Number of genes ● ● ● ● ● ● ● ● ● ● ● ● ● 6 ● ● ● ● ● ● ● ● ● ● 5 ● ● 4 ● ● ● ● ● ● 1 ● 2 3 5 ● ● ● ● ● ● 4 ● ● ● 2 1 ● ● ● ● ● ● ● ● 3 ● ● ● ● ● 6 7 8 9 ● ● ● ● ● ● ● ● ● ● ● ● ● 10 11 12 13 14 15 16 17 18 19 20 21 H. melpomene chromosome 10 ● ● 7 100 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 8 ● ● ● ● 12 10 ● ● ● ● ● ● ● ● ● ● ● ● 1:5 21 1 FigureS1.ChromosomalcolinkagebetweenD.plexippusand B.mori(top)orH.melpomene (bottom)forpredicted orthologousproteins. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. B. mori reference chromosome ● 1 ● 16 ● FigureS2.Ratiosofmale:female mediannormalizedgenomic sequencingcoverageplottedby scaffoldlength.Scaffolds assignedtochromosomes putativehomologoustotheneoZchromosomeinD.plexippusare plottedindistinctcolors.Top, relativetoB.mori,to chromosomes1(i.e.,Z;blue)and 16(green).Bottom,relativetoH. melpomene,chromosomes1 (i.e.,Z;green)and2(blue). Other ● ● ● ● ● ● ● ●● 0.0 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ●● ●● ●● ● ● ●● ●● ● ● ●●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ●● ●● ● ●●● ● ● ●● ● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ● ●● ● ● ●● ●●●● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ●●● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●●●● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ●● ● ● ● ●● ●●●● ● ● ● ●● ●● ● ● ●● ●● ● ● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ● ●● ●● ● ● ●● ● ●● ● ● ● −0.5 Log2[ Male:Female coverage ] 1.0 ● ● 5.5 6.0 6.5 7.0 Log10[ Scaffold Length (bp) ] H. melpomene reference chromosome ● 2 ● Z ● Other ● ● ● ● ● ● ● ●● 0.0 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ●● ●● ●● ● ● ●● ●● ● ● ●●● ●●● ●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ●● ● ● ● ● ●●●● ● ●●●● ● ●● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●●●●● ● ●● ● ● ● ● ●● ● ●● ● ● ●● ●●● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●●●● ●● ●● ● ●● ● ●● ● ● ●● ● ● ●● ●● ● ● ● ● ● ●● ●●●● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ● ●● ●● ● ● ●● ● ●● ● ● ● −0.5 Log2[ Male:Female coverage ] 1.0 ● ● 5.5 6.0 Log10[ Scaffold Length (bp) ] 6.5 7.0 bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 2 1 2 1 steps 2 1 steps 0 Male:Female coverage ratio 0 Female coverage (Normalized) 0 Male coverage (Normalized) DPSCF300403 0 0.025 0.05 0.075 0.1 0.125 Scaffold Position (Mbp) 0.15 0.175 0.2 FigureS3.NormalizedmaleandfemalecoveragealongthelengthDPSCF300403.Coveragesareplottedas slidingwindows(width=5Kbp,step=1Kbp)ofmedianbasepairvalues.Theassociatedmale:femaleratioof coverageforeachwindowisplottedasaredlinebelowthepairofsex-specificplots. mcov.smooth[, 2] H. melpomene Chr02 & Chr21(Z) vs DPSCF300001 H. melpomene Chromosome A Chr21(Z) bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Chr02 0 1000000 M. cinxia chromosome B 4000000 3000000 2000000 DPSCF300001 position (bp) 5000000 6000000 5000000 6000000 M. cinxia Chr21 & Chr01(Z) vs DPSCF300001 Chr01(Z) Chr21 0 1000000 4000000 3000000 2000000 DPSCF300001 position (bp) FigureS4.PromeralignmentsofDPSCF300001againsttheZandhomologous autosomefrom(A)H.melpomeneand(B)M.cinxia.Bestone-to-one alignmentsweregeneratedusingdefaultparameters.ManualinspecEonof alignmentcoordinatesrevealedthetransiEononDPSCF300001fromneo-Zto anc-ZoccursinawindowbetweenposiEons3.878and3.886Mbp. bioRxiv preprint first posted online Jan. 12, 2016; doi: http://dx.doi.org/10.1101/036483. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. TableS1.SummaryofassigningD.plexippusgenesandscaffoldstochromosomesviaorthology“liftover” relativetothreedifferentreferenceassemblies. M.cinxia H.melpomene B.mori 15130 15130 15130 totalnumberofproteincodinggenesintarget 14129 14427 14566 numberoftargetgenesassignedtochromosome 0.934 0.954 0.963 fractionoftargetgenesassignedtochromosome 454 514 508 6740 8190 7928 numberoftargetscaffoldsassignedto chromosomes numberof1:1orthologsidentified 4607 7150 7534 0.684 0.873 0.95 numberof1:1orthologsassignedtoreference chromosome fractionof1:1orthologsassignedtoreference chromosome SupplementaryTableS2.Sampleidentificationdetailsforsequencingdatausedincoverateanalyses. Region Sample North Plex_MA_HI004_M America Plex_MA_HI035_F Other Danaus Species plexippus Sex male plexippus female Plex_FLn_StM123_F plexippus female Plex_FLn_StM146_M plexippus male Plex_WSM_M36_M plexippus male Plex_WSM_M38_F plexippus female Erip_BRA_16005_F erippus female Erip_BRA_16008_M erippus male Eres_CRC_92_F eresimus female Eres_FL_27_M eresimus male Gili_CRC_30_M gilippus male Gili_TX_01_F gilippus female Collectinglocation Date Accession Massachusetts,USA July32008 SRX679269 SRX679310 Massachusetts,USA August10 2009 SRX680105 St.Marks,Florida, October USA 2008 SRX681753 St.Marks,Florida, October USA 2009 SRX680118 Samoa June2007 SRX681528 Samoa June2007 Brazil September SRX682069 2010 Brazil September SRX682070 2010 SRX682071 CostaRica July24 2010 SRX682072 Florida,USA July20 2009 SRX682073 CostaRica July24 2010 SRX998564 Texas,USA October 2010
© Copyright 2026 Paperzz