TEMPERATURE ADAPTATION IN ENZYMES FROM POIKILOTHERMS: ACETYLCHOLINESTERASES IN THE NERVOUS SYSTEM OF FISHES by JOHN BALDWIN B.Sc. M.Sc, (Hons.), Monash U n i v e r s i t y , 1965 Monash U n i v e r s i t y , 196,9 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of Zoology We a c c e p t t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l 1970 In presenting this an a d v a n c e d d e g r e e the I Library further for agree in at University the make tha it partial freely permission this representatives. thesis for It financial for of gain ^-o-e»li The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8 , Canada of of Columbia, British for extensive by the Columbia shall not the requirements reference copying of Head o f is understood that written permission. Department fulfilment available s c h o l a r l y p u r p o s e s may be g r a n t e d by h i s of shall thesis I agree and this be a l l o w e d that study. thesis my D e p a r t m e n t copying or for or publication w i t h o u t my i ABSTRACT The e f f e c t s of temperature (AChE) f r o m if the n e r v o u s such compensatory acclimation displayed At level trout (Salmo unaffected temperature substrate hydrolysis by a s s a y temperature be and c o n c e n t r a t i o n s the b y AChE f r o m e e l remains these animals. a t temperatures Plots rainbow relatively U shaped close ranges o f Km versus c u r v e s w i t h minimum t o t h e minimum temperature. I t i s proposed that reaction rate i s a c h i e v e d throughout the h a b i t a t range by temperature directed as observed o v e r the temperature f o r t h e s e enzymes y i e l d values occurring could thermal function. g a i r d n e r i i ) and e l e c t r i c n o r m a l l y e x p e r i e n c e d by Km o f enzyme (ACh) determine t h e r m a l accommodation, system probable p h y s i o l o g i c a l of a c e t y l c h o l i n e to a d a p t a t i o n to temperature by t h i s p h y s i o l o g i c a l a t the acetylcholinesterase o f f i s h were s t u d i e d phenomena as and e v o l u t i o n a r y interpreted rate system upon habitat t h e r m a l accommodation o f temperature changes i n enzyme-substrate affinity. Thermal speckled trout acclimation (Salvelinus namaychus) i s a c c o m p a n i e d proportions displaying Since two of o f two trout, f o n t i n a l i s ) and by a l t e r a t i o n s and lake probably i n trout (Salvelinus i n the r e l a t i v e e l e c t r o p h o r e t i c a l l y d i s t i n c t AChE d i f f e r e n t a n d a d a p t i v e Km-temperature the minimum Km rainbow i n rainbow variants relationships. v a l u e s and e n e r g i e s o f a c t i v a t i o n o f t r o u t enzymes a r e s i m i l a r , and the the s p e c i f i c a c t i v i t i e s t h e enzymes a r e e s s e n t i a l l y i d e n t i c a l f o l l o w i n g acclimation of fish to 2° and AChE a c t i v i t y may However, the pH, ionic 17°C, not i t i s suggested that occur at possibility acclimation p r o c e s s may eel and the the evolutionary different Antarctic of reaction Shifts i n the by central fish o v e r the the electric indicate i n species temperature thermal range n o r m a l l y r e l a t i o n s h i p during AChE enzymes c o u l d be encountered. speciation n e r v o u s s y s t e m were c o n s i d e r e d and a into mechanisms the trout hypothesis i n v o l v i n g h y b r i d i z a t i o n between f i s h p o p u l a t i o n s was trout observed that hybrids inter-species crosses. between s p e c k l e d and lake I t was trout contained a greater e l e c t r o p h o r e t i c a l l y d i s t i n c t AChE v a r i a n t s and further, complexes the the presence of i n rainbow, original incorporation of m u l t i p l e rainbow t r o u t probably occurred divergence of these It substrate directed three trout number the with formed of parent c o n t r o l l e d AChE indicated that AChE enzymes i n t o p r i o r to the evolutionary species. i s c o n c l u d e d from t h i s a f f i n i t y with lake tested than d i d e i t h e r s i m i l a r thermally s p e c k l e d and are following Possible incorporated a accommodation c h a n g e s i n enzyme c o n f o r m a t i o n amino a c i d s u b s t i t u t i o n s . that inhabiting i s b a s e d upon s e l e c t i o n f o r allow as rates. Trematomus b o r c h g r e v i n k i Km-temperature i n terms o f w h i c h two reaction a d a p t a t i o n o f AChE f u n c t i o n accumulation of i n such f a c t o r s AChE enzymes f r o m r a i n b o w t r o u t , relationship that w i l l rate interpreted the to s t a b i l i z e thermal environments Km-temperature changes of temperatures. membrane l i p i d s w h i c h accompany act Comparisons o f compensation different acclimation remains t h a t e n v i r o n m e n t and rate study that temperature, and p r o d u c t i o n o f enzyme v a r i a n t s the c h a n g e s i n enzymetemperature displaying adaptive Km-temperature for controlling functions relationships, are both i m p o r t a n t mechanisms c a t a l y t i c a c t i v i t y i n a n enzyme s y s t e m o v e r a wide range of temperatures. which iv TABLE OF CONTENTS Page Abstract i List of Tables v i i List of Figures viii Acknowledgements x Introduction 1 1. Statement of 2. T h e r m a l Accommodation and in 3. the the Central Problem 1 Thermal N e r v o u s System o f Role of A c e t y l c h o l i n e s t e r a s e Acclimation Poikilotherms i n Nerve Transmission 4. Importance o f Central 3 5 C h o l i n e r g i c Mechanisms i n Nervous the System 6 Methods 12 1. Experimental Animals 12 2. Enzyme P r e p a r a t i o n s 13 a. Preparation of Rainbow T r o u t Brain Acetylcholinesterase b. Preparation Trout 13 of A c e t y l c h o l i n e s t e r a s e B r a i n and Spinal Cord f o r from Electro- phoresis 14 c. Electric Eel Acetylcholinesterase d. Preparation of Trematomus 14 borchgrevinki Brain Acetylcholinesterase Activity 15 3. Assay of A c e t y l c h o l i n e s t e r a s e 15 4. Gel Electrophoresis 15 5. Protein Determinations 16 Page 6. Sucrose Gradient 7. Ultraviolet Results 1. Centrifugation Difference 16 Spectra 18 a. Introduction 18 b. Method 18 and D i s c u s s i o n 20 Partial Purification o f Rainbow T r o u t Brain Acetylcholinesterase 2. Characterization of Acetylcholinesterase Rainbow T r o u t Central a. Introduction b. Multiple in c. Nervous Forms o f Substrate System 20 Acetylcholinesterase Central S p e c i f i c i t y and o f Rainbow T r o u t Nervous System 20 Inhibition Brain Acetyl- cholinesterase 22 d. Effect 27 e. Sucrose Gradient Trout o f pH on AChE A c t i v i t y C e n t r i f u g a t i o n o f Rainbow Brain Acetylcholinesterase 27 Characterization of Acetylcholinesterase Trematomus b o r c h g r e v i n k i 4. from the 20 t h e Rainbow T r o u t Studies 3. 20 Effect a. Brain o f A s s a y T e m p e r a t u r e upon of A c e t y l c h o l i n e Effect Hydrolysis 30 the K i n e t i c s by A c e t y l c h o l i n e s t e r a s e Effect 30 o f T e m p e r a t u r e on t h e Maximum V e l o c i t y of Acetylcholinesterase b. from Hydrolysis 30 o f A s s a y T e m p e r a t u r e on Enzyme- Substrate Affinity 35 vi Page c. R e l a t i o n s h i p between T h e r m a l l y Induced Changes i n Km a n d S t r u c t u r a l C o n f o r m a t i o n of E l e c t r i c 5. Eel Acetylcholinesterase T h e r m a l Accommodation, Evolutionary Thermal A c c l i m a t i o n Adaptation Acetylcholinesterase 45 and t o Temperature f o r from t h e Nervous System o f Fish. 53 a. Thermal Accommodation 53 b. Thermal A c c l i m a t i o n 59 (i) Adjustment o f the thermal accommodation (ii) c. range 59 Rate c o m p e n s a t i o n o f AChE a c t i v i t y E v o l u t i o n a r y A d a p t a t i o n t o Temperature (i) 68 Adjustment o f the thermal accommodation (ii) 60 range 68 E v o l u t i o n o f the rainbow t r o u t b r a i n AChE complex ( i i i ) Regulation the 69 o f the c o m p o s i t i o n o f t r o u t b r a i n AChE complex thermal a c c l i m a t i o n during 73 Summary 76 Abbreviations 80 Literature 81 Cited L I S T OF Partial Trout Purification TABLES o f AChE Rainbow Brain Summation E x p e r i m e n t s w i t h and from the E f f e c t Choline of Inhibitors on the H y d r o l y s i s o f ACh b y Rainbow T r o u t Electric E e l AChEs Apparent Energies the at Rainbow T r o u t Several of A c t i v a t i o n and E l e c t r i c E e l AChEs Temperatures o f Temperature Trematomus upon t h e Km a n d Rate f o r B r a i n AChE o f t h e Rate Change a n d o f ACh H y d r o l y s i s Trematomus 1 Q a t ConcentraKm f o r Electric Eel borchgrevinki o f S a l t s o n t h e Km a n d Rate o f Hydrolysis o f ACh b y AChE Acclimated Rainbow Specific Activities from 2°C Trout o f B r a i n AChE n Rainbow T r o u t A c c l i m a t e d for Q o f ACh A p p r o a c h i n g t h e Minimum AChEs f r o m Rainbow T r o u t , Effect from borchgrevinki R e l a t i o n s h i p b e t w e e n Km and Trout, E e l a n d Trematomus o f ACh H y d r o l y s i s tions Km o f ACh f o r AChEs f r o m Rainbow Electric Effect and (Ea) f o r R a t e s o f ACh H y d r o l y s i s a t Minimum Levels Esters 35 Days to 2 from o a n d 17 C V l l l L I S T OF FIGURES Figure 1 Facing Page R e s o l u t i o n o f Rainbow T r o u t B r a i n AChEs by A c r y l a m i d e 2 Substrate Substrate Rainbow T r o u t 24 S p e c i f i c i t y o f AChE f r o m 17°C Acclimated 4 23 S p e c i f i c i t y o f AChE f r o m 2 ° C Acclimated 3 Gel Disc Electrophoresis Rainbow T r o u t 25 I n f l u e n c e o f pH on t h e A c t i v i t y o f Rainbow T r o u t B r a i n AChEs 5 Sucrose Gradient 28 C e n t r i f u g a t i o n o f Rainbow T r o u t a n d E l e c t r i c E e l AChEs 6 Arrhenius 29 P l o t s o f AChE A c t i v i t y f o r the Rainbow T r o u t a n d E l e c t r i c E e l Enzymes 7 Effect 33 o f A s s a y T e m p e r a t u r e o n t h e Km o f ° AChE f o r AChEs f r o m 17 o and 2 C A c c l i m a t e d Rainbow T r o u t 8 Effect for 9 38 o f A s s a y T e m p e r a t u r e o n t h e Km o f ACh E l e c t r i c E e l AChE Effect 39 o f A s s a y T e m p e r a t u r e o n t h e Km o f ACh f o r Trematomus b o r c h g r e v i n k i AChE. Lineweaver-Burk P l o t s a t 2° and 10°C. 10 Sucrose Gradient Electric 11 Effect Sedimentation Profiles 43 of E e l AChE a t 1 5 ° , 2 5 ° a n d 3 3 ° C 48 o f T e m p e r a t u r e o n t h e Km o f ACh f o r Electric E e l AChE A s s a y e d i n t h e C e n t r i f u g a - t i o n Medium. L i n e w e a v e r - B u r k 25° and 33°C. P l o t s a t 15°, 49 E f f e c t o f Temperature upon the Sedimentation Behaviour o f E l e c t r i c E e l AChE Ultraviolet D i f f e r e n c e Spectra o f E l e c t r i c E e l AChE as a F u n c t i o n of Temperature E f f e c t o f Assay Temperature on the Km o f ACh f o r AChEs from Rainbow Trout, E l e c t r i c E e l and Trematomus ACh S a t u r a t i o n Curves o f E l e c t r i c E e l AChE at o o o 15 , 25 and 40 C ACh S a t u r a t i o n Curves o f Trematomus b o r c h g r e v i n k i AChE a t 2° and 10°C ACh S a t u r a t i o n Curves o f 2°C A c c l i m a t e d o o o o Rainbow Trout AChE a t 0 , 2 , 12 and 18 C R e s o l u t i o n o f B r a i n AChEs from Trout, Speckled Lake Trout and Splake by Acrylamide Gel D i s c E l e c t r o p h o r e s i s X ACKNOWLEDGEMENTS I am e s p e c i a l l y g r a t e f u l George Somero f o r a d v i c e a n d e n c o u r a g e m e n t t h r o u g h o u t t h e course of t h i s study. I would l i k e f o r use o f the u l t r a c e n t r i f u g e available Dr. t o D r s . P e t e r Hochachka and t o thank the Cary spectrophotometer. J. I. am? g r a t e f u l t o F. E . J . F r y a n d T e r r y McFadden a t t h e U n i v e r s i t y speckled, lake and splake t r o u t t h e P i n a s k Lake r a i n b o w E. P h i l l i p s critical experiments, trout. and to T e r r y Gjernes To D r s . G. I . Drujrimond, a n d D. J . R a n d a l l go s p e c i a l reading of this thesis. o f Toronto f o r s e t t i n g up t h e thanks I would a l s o my w i f e Wendy, a n d M r s . LouAnne Moon f o r t y p i n g drafts. Green a n d D r . S. EL Z b a r s k y who made Laboratory f o r Experimental Limnology for Dr. B e v e r l y like f o r their t o thank innumerable 1 INTRODUCTION 1. Statement o f the The ability Problem of poikilotherms thermal environments out r e l a t i v e l y and problems thesis to describe t h e i r environment. claims The several reason f o r t h i s t h e s e c o n c e p t s may term of a function a particular Thermal be to terms, b u t r a t h e r t o are o f t e n used l o o s e l y give i n the level, so extended to the m o l e c u l a r l e v e l . "thermal accommodation" w i l l temperature refer range, t o the the t h e r m a l accommodation accommodation o c c u r s i n s t a n t a n e o u s l y and "Thermal ability acclimation" describes the a b i l i t y intrinsic The physiological of a temperature a p e r i o d o f exposure o f an i n d i v i d u a l thermal regime. i s an range. function. t h e r m a l l y accommodate o v e r a d i f f e r e n t various systems t o p r o c e e d i n d e p e n d e n t l y o f t e m p e r a t u r e throughout p r o p e r t y o f the after be u s e d i n i s n o t so much t o make t o group p r o c e s s e s a t the p h y s i o l o g i c a l The to terms w h i c h w i l l the r e a c t i o n s o f b i o l o g i c a l s p e c i f i c m e a n i n g s t o terms w h i c h that i n body temperature, function. f o r the c o r r e c t n e s s o f c e r t a i n literature through- d i s c u s s i n g a number o f t h e s e q u e s t i o n s i n d e t a i l , i s necessary to define this of a t the b i o c h e m i c a l l e v e l , p a r t i c u l a r l y w i t h r e s p e c t t o enzyme Before a wide range i n many c a s e s t o r e m a i n a c t i v e l a r g e and o f t e n r a p i d changes r a i s e s many i n t e r e s t i n g it to u t i l i z e function range organism to a new time course o f thermal a c c l i m a t i o n f o r functions i n poikilotherms i s generally i n t h e o r d e r o f days o r w e e k s . "Evolutionary adaptation" w i l l which o c c u r o v e r time intervals be used to describe l o n g e r than the l i f e changes span o f 2 the i n d i v i d u a l organism. c o v e r such changes to Thermal as t h o s e u n d e r l y i n g thermal environments difference i s greater the a b i l i t y o f a The the studies general able questions. i n this answers t o the a r e enzyme s y s t e m s on the c a t a l y t i c and i n many the maintenance of function following poikilotherms r a n g e s when t h e e f f e c t s regulatory many mammalian and b a c t e r i a l enzymes a p p e a r with thermal t h e s i s were u n d e r t a k e n w i t h to f u n c t i o n over wide temperature temperature temperature compensated f o r by at least partial How function acclimation. reported hope o f p r o v i d i n g would inhabiting i n c a s e s where t h e t h a n c a n be accommodation o r t h e r m a l In adaptation proceed i n r e l a t e d stenothermic poikilotherms different of evolutionary properties of t o be i n c o m p a t i b l e through such thermal extremes? p a r t i c u l a r , c a n s u c h phenomena as t h e r m a l accommodation, acclimation and evolutionary d i s p l a y e d by poikilothermic a t the o f enzyme level The problems (i) a d a p t a t i o n s to temperature systems o u t l i n e d as Select a c r i t i c a l interpreted adopted to i n v e s t i g a t e (ii) (iii) p h y s i o l o g i c a l f u n c t i o n which i s and acclimation, I s o l a t e a k e y enzyme f r o m t h i s system investigate t h e e f f e c t s o f immediate changes thermal a c c l i m a t i o n and Compare t e m p e r a t u r e with these follows: known t o d i s p l a y b o t h t h e r m a l a c c o m m o d a t i o n thermal as function? experimental approach c a n be be o b s e r v e d a n d thermal and temperature upon t h e enzyme, c h a r a c t e r i s t i c s of this enzyme s i m i l a r c h a r a c t e r i s t i c s o f h o m o l o g o u s enzymes 3 obtained thermal from s p e c i e s s e l e c t e d as a s u i t a b l e rationale behind this of 2. the from the nervous choice i s discussed Accommodation and Central Nervous probable System importance poikilotherms limiting the o v e r a l l 1967; Thermal relationship temperature role limits f r o g s was nervous Nagai, between c e n t r a l tolerance Brett, 1956; 1968). The nervous the system 1958; following i n establishing a the o f the Brecht found t h a t heat p a r a l y s i s i n (1926) d e t e r m i n e d t h e u p p e r system, peripheral thermal l i m i t s i n s k a t e s a n d f l o u n d e r were a b l e ephapses Fisher, and o c c u r r e d nerve c o n t r a c t i o n were i n h i b i t e d . established and nervous f u n c t i o n and c o n f i n e d t o the c e n t r a l nervous r e s p o n s e s and of tolerance, (thermal accommodation range) I n 1908, c o n d u c t i o n and muscle i n the sytem i n the c e n t r a l temperatures below those a t which across sections p r o c e s s have been c o v e r e d i n ( e . g . F r y , 1947; P r o s s e r and Acclimation of thermal o f changes acclimation whole organism. and The i n the f o l l o w i n g o b s e r v a t i o n s a r e p r o b a b l y the most r e l e v a n t tissues fish of Poikilotherms o f the c e n t r a l i n setting numerous r e v i e w s at of enzyme f o r s u c h a s t u d y . Thermal Baslow, sytem introduction. The in different environments. Acetylcholinesterase was inhabiting that functions Battle a t which to e l i c i t involving various physiological synapses s u c h a s t h e h e a r t pacemaker mechanism, c o n d u c t i o n the nerve muscle junction, and peristalsis i n intenstinal 4 smooth m u s c l e , temperature i t was limit failed a t , o r s l i g h t l y below, of the organism. In a l a t e r noted t h a t a t temperatures reflexes proposed report lethal (Battle, a p p r o a c h i n g the u p p e r disappeared i n d e f i n i t e t h a t death r e s u l t e d the sequence, primarily from and c o - o r d i n a t i n g mechanism. Orr similar conclusion i n Rana p i p i e n s . coworkers have demonstrated physiological in f o r heat death system be most t e m p e r a t u r e peripheral Prosser, nervous 1962; sensitive, f o l l o w e d by function being least P r o s s e r and Farhi, 1965; of in fish appears thermal tolerance The acclimate ability t o be a key f o r the whole o f the c e n t r a l sensitive factor organism. nervous system s t i m u l a t i o n of the r e t i n a of s e v e r a l weeks. nervous by c e n t r a l response Roots a series The f u n c t i o n has and Prosser low (4°C) in fish in brain rainbow changes i n b o t h nerve period o f t h e r m a l a c c l i m a t i o n on i n goldfish central a different P r o s s e r and F a r h i utilizing they conduction t i m e o v e r an a c c l i m a t i o n (1962) a n d to demonstrated temperatures a l s o b e e n shown i n q u i t e of experiments conditioned reflexes effect 1968). limits By m o n i t o r i n g t h e m i d were a b l e t o show c o m p e n s a t o r y and nervous in setting response v e l o c i t y and (Roots of the c e n t r a l (1964). (16°C) a n d to P r o s s e r and N a g a i , b y K o n i s h i and H i c k m a n t r o u t h e l d a t both high appear s p i n a l cord, with t o t h e r m a l s t r e s s has been most c l e a r l y to e l e c t r i c a l neurosensitivity Mid b r a i n f u n c t i o n s Thus the t h e r m a l a c c o m m o d a t i o n r a n g e system P r o s s e r and b y b o t h b e h a v i o u r a l and of f i s h . o f some (1955) a r r i v e d a t a techniques a h i e r a r c h y of temperature the nervous thermal i t was the f a i l u r e central 192 9) (1965). the e s t a b l i s h m e n t of they found t h a t both the way In 5 lowest temperature a t which a c o n d i t i o n e d established, conditioned w h i c h the and the f i s h were during Baslow temperature response v a r i e d d i r e c t l y with for the temperature by include the c h a n g e s i n s u c h f a c t o r s as metabolites. However, l i t t l e Role of A c e t y l c h o l i n e s t e r a s e i s known o f (ACh) as a chemical (1959), and later and described i n several recent De 1969 1964). of nerve a c t s as receptor further role of neuro- The by to the been (Nachmansohn 1967, 1968, following outline of c h o l i n e r g i c i s given by i n the Nachmansohn i n n e r v e membrane s i g n a l which and receptor groups f r o m the i n the conformational the following i s recognized protein located within r e a c t i o n b e t w e e n ACh carboxyl Transmission t r a n s m i t t e r a t the reviews of function. developments r e l a t i n g impulses is released e x c i t a t i o n and change role review. ACh specific the f u n c t i o n o f c h o l i n e r g i c systems have Robertis, transmission his and j u n c t i o n h a v e b e e n s u m m a r i z e d i n a monograph structure 1969; i n Nerve e a r l y s t u d i e s w h i c h e s t a b l i s h e d the acetylcholine enzyme electrolyte distribution, these changes i n thermal a c c l i m a t i o n of nervous Nachmansohn to t h e r m a l a c c l i m a t i o n have been r e c e n t l y r e v i e w e d various muscular the in structural lipids, The be c e n t r a l nervous system (1967) and responses of levels, 3. could acclimated. Biochemical fish cold blocking reflex receptor the a stereo- membrane. induces a molecule, releasing C a protein. The free C a c h a n g e s i n membrane by + + + + The conformation i o n s bound ions induce phospholipids to 6 and other polyelectrolytes, leading permeability across the and the movement o f t o a change i n n e r v e membrane f r o m 20,000 t o 40,000 membrane f o r e a c h m o l e c u l e o f ACh initially A c e t y l c h o l i n e s t e r a s e (AChE) r a p i d l y h y d r o l y s e s the receptor p r o t e i n to r e t u r n t h e r e b y r e - e s t a b l i s h i n g the Nachmansohn p r o p o s e s t h a t are f u n c t i o n as the there i s no general 1959; 1969; Changeux, Podleski, 1969; While suggest t h a t ACh i t has 1966; this latter Ehrenpreis, of 1968; 1967; point essential Karlin, t h a t h y d r o l y s i s o f ACh Importance of Nervous Durrell, et a l this by 1969). has action (1969) a t the synapse phospholipids. AChE w o u l d r e m a i n an system. C h o l i n e r g i c Mechanisms i n t h e Central System In. s p i t e o f a l a r g e volume o f w i d e s p r e a d d i s t r i b u t i o n o f ACh, (ChAc, the 1967; Changeux e t a l , 1968, a l t e r s membrane p e r m e a b i l i t y component o f (Nachmansohn, cholinergic transmission example, that However, a l t e r n a t i v e mechanisms o f ACh For AChE o f t e n been suggested e n h a n c i n g e n z y m a t i c h y d r o l y s i s o f membrane I t appears 4. conformation ACh-receptor molecule. theory have been p r o p o s e d . its original permitting A C h - r e c e p t o r p r o t e i n and a g r e e m e n t on g a i n e d wide acceptance, by the Hasson-Voloch, this ACh', released. membrane p e r m i a b i l i t y b a r r i e r . s t r u c t u r a l l y l i n k e d and AChE may to ions enzyme t h r o u g h o u t the involved vertebrate c e n t r a l a c t i o n o f ACh data r e l a t i n g choline i n synthesis 1945; the acetyltransferase o f ACh) and c e n t r a l n e r v o u s s y s t e m and (Feldberg, to Feldberg and AChE to the Vogt, 1948; 7 B u r g e n and Eccles, Chipman, 1964; Krnjevic, of b o u n d ACh, e t a_l, 1967) and junction (De the only (Eccles been w e l l the i s mediated similar that central proposal reasons: axonal has synapse a central Arnaiz remains the cholinergic s i g n i f i c a n t amounts ( S c h l a e p p e r and (1959) has the of far Torack, proposed that at the neuromuscular 1966; axonal junction. Consideration been d i s c o u n t e d f o r the i t i s not possible a p p l i c a t i o n of the to b l o c k at blocking t o x i c e f f e c t of a p p l i c a t i o n o f ACh a Rodriguez DeLores t h e n c h o l i n e r g i c mechanisms w o u l d be these c o n d i t i o n s specific gradient t h r o u g h a c h o l i n e r g i c mechanism e s s e n t i a l l y conduction i s affected, required fractions plasma membrane a t r e g i o n s junctions operating generally c o n d u c t i o n by the nervous membrane sucrose documented t h a t nervous t r a n s m i s s i o n . 1. central to 1969; ChAC h a v e b e e n i s o l a t e d f r o m 1964; Nachmansohn conduction i s true, Koelle, e t a_l, 1954) . ), and to synaptic p r e p a r a t i o n s by Robertis, removed f r o m s y n a p t i c 1966 AChE and 1965; 1964; c l e a r e v i d e n c e as m o t o r neurone-Renshaw c e l l AChE o c c u r w i t h i n that no c l e a r demonstration of I t has for Whittaker, is still cortex centrifugation this 1964; A p r i s o n e_t a_l, c h o l i n e r g i c mechanisms i n t h e mammalian b r a i n Brzin, 1963; A l t h o u g h n e r v e e n d i n g and containing first Hebb, Robertis, 1969),, t h e r e importance system. De 1951; fails general depolarization of neuromuscular to b l o c k axonal i n h i b i t o r f a r exceeds junction. r e s u l t from a compounds u s e d ; t o e l i c i t an possibly this p o t e n t AChE i n h i b i t o r s , o r i f i s assumed t o the essential following i n many c a s e s concentration the of If action r e l a t i n g to 2. Under non- direct potential, although such f a c t o r s as 8 altered on pH or i o n i c e n v i r o n m e n t may occur. Conclusions s u c h r e s u l t s h a v e b e e n r e a d i l y d i s m i s s e d by the grounds t h a t not enough i s known a b o u t the AChE and the ACh-receptor reagents (Nachmansohn, evidence i n d i c a t i n g that p l a s m a membrane f r o m the the external A r m e t t and and medium Richie, Rosenberg, 1968), field and the o u t e r membranes do action Deal, 1965; concept of gained function little of 1957; of pharmacological experimental i n f a c t mask o f AChE i n h i b i t o r s and Rosenberg, the a x o n a l c o n d u c t i o n s has this the on availability Despite considerable (Walsh and 1960; Nachmansohn to e x t e r n a l l y a p p l i e d 1969). based Dettbarn, Brzin, ACh the in 1960a;b; 1966; Martin c h o l i n e r g i c a l l y mediated support from workers a x o n a l AChE r e m a i n s an in open question. The release mammalian c e r e b r a l pathways and cited in the as the and Chong, has suggested not suitable brain f o r the Celesia that function in cortical activity l e v e l s i n the In r e c e n t Russell and Jasper, transmission arousal, or central Szerb, 1966). s l o w and but nervous afferent also 1965; Phillis (1969) diffuse release may play a more is general different system. investigators These s t u d i e s , have cholinergic and approach have been Heller been mechanisms r e l a t i o n s h i p s between c e n t r a l W e i s s and the Krnjevic i n maintaining i n t h i s type of (1969) and of cholinergic ( K a n a i and animal behaviour. problems i n v o l v e d by importance of y e a r s a number o f searched for possible stimulation in r e t i c u l a r f o r m a t i o n has t h i s type o f for rapid amounts o f ACh following nervous system 1965; mechanisms and substantial cortex mid evidence central of (1969). In the reviewed the 1950's 9 Rosenzweig and and coworkers the e f f e c t s o f "impoverished" b e h a v i o u r a l environments AChE a c t i v i t y was to investigated i n the r a t c e n t r a l nervous such b e h a v i o u r a l 1957; situations B e n n e t t e t a_l, 1964) . Russell in rats. level the (see established AChE w i t h organo- 1969). Similar (Glow a n d Rose, responses n o t l i n e a r , b u t below a s p e e d o f e x t i n c t i o n was d i r e c t l y r e l a t e d critical activity, t o AChE i n h i b i t i o n e x p e r i m e n t s b y Glow a n d 1966; Glow e t a_l, 1966) demonstrated r e d u c t i o n o f AChE a c t i v i t y b e l o w 40 p e r c e n t o f t h e normal v a l u e leads While t o a sudden i t is difficult increase cholinergic i n brain ACh l e v e l s . a t p r e s e n t t o e v a l u a t e the importance o f such experiments with a dose-response o f 40 t o 50 p e r c e n t i n h i b i t i o n o f n o r m a l AChE Russell, subjected (Rosenzweig, of learned behavioural The r e l a t i o n s h i p was coworkers that and the e x t i n c t i o n and e v i d e n c e i n animals as maze t r a i n i n g r e l a t i o n s h i p between i n h i b i t i o n o f b r a i n phosphates, upon t h e l e v e l s o f system, p r e s e n t e d f o r i n c r e a s e d AChE a c t i v i t i e s "enriched" i n terms o f u n d e r l y i n g mechanisms, t h i s b e h a v i o u r a l a p p r o a c h , t o g e t h e r the b i o c h e m i c a l and n e u r o p h y s i o l o g i c a l e v i d e n c e f o r the presence and a c t i o n system, o f ACh a n d AChE i n t h e c e n t r a l seems t o i n d i c a t e mechanisms i n c e n t r a l a definite role nervous for a suitable outlined for cholinergic integration. Thus AChE f r o m t h e f i s h t o meet t h e c r i t e r i a nervous central nervous system appears a t the b e g i n n i n g o f t h i s enzyme s y s t e m w i t h w h i c h discussion to study thermal a c c l i m m a t i o n and e v o l u t i o n a r y a d a p t a t i o n t o temperature a t the level o f enzyme f u n c t i o n . a critical physiological i t i s a n enzyme process that incorporated i s known into to d i s p l a y both thermal 10 a c c o m m o d a t i o n and environmental An thermal a c c l i m a t i o n i n response to changing temperature. i n v e s t i g a t i o n i n t o the e f f e c t s o f immediate c h a n g e s upon AChE a c t i v i t y revealed that thermal accommodation of r e a c t i o n rate does o c c u r a t p r o b a b l e p h y s i o l o g i c a l concentrations. The b a s i s influence of temperature The studied these phenomenon l i e s upon enzyme s u b s t r a t e e f f e c t s of thermal a c c l i m a t i o n i n several fish for this species of t r o u t . temperature substrate i n the affinity. upon AChE were Following acclimation of to d i f f e r e n t temperatures, a l t e r a t i o n s i n the relative proportions analysis o f t h e s e enzymes showed t h a t when t h e e n v i r o n m e n t a l temperature enzyme c o u l d was no o f two AChE v a r i a n t s were o b s e r v e d . m a i n t a i n e d a t a l e v e l where one longer thermally accommodate o r where r e g u l a t i o n o f c a t a l y t i c form o f the for reaction a c t i v i t y m i g h t be second form i s produced f o r which temperature relationship i s better Kinetic lost, t h e enzyme s u b s t r a t e rate, a affinity- s u i t e d f o r c o n t r o l of these functions. Comparisons o f the p r o p e r t i e s AChE enzymes f r o m d i f f e r e n t s p e c i e s different thermal environments evolutionary o f p r o b a b l y homologous of fish inhabiting l e a d to the c o n c l u s i o n a d a p t i o n o f AChE f u n c t i o n t o t e m p e r a t u r e b a s e d upon s e l e c t i o n f o r an e n z y m e - s u b s t r a t e relationship permitting range that is affinity-temperature t h e r m a l accommodation o f r a t e o v e r the temperature markedly reaction n o r m a l l y e x p e r i e n c e d by the species. I n answer t o t h e q u e s t i o n these experiments, i t c a n be initially stated that posed in designing t h e r m a l accommodation, t h e r m a l a c c l i m a t i o n and evolutionary as d i s p l a y e d b y many p o i k i l o t h e r m and i n t e r p r e t e d a t the level adaptation to s y s t e m s c a n be o f enzyme function. temperature observed 12 METHODS 1. Experimental Animals A d u l t rainbow trout (Salmo gairdnerii) 250 g were o b t a i n e d f r o m t h e Sun V a l l e y B.C. The f i s h were h e l d c i r c u l a t i n g water Feed' gill were u s e d tolerate Salt i n P i n a s k Lake, i n a number temperatures in Lake C i t y , New Utah). i n the range steel o f 0° t o 2 5°C. groups o f t r o u t tanks i n which not possible acclimation the temperature Speckled trout (Salvelinus refrigeration through changed d a i l y . The these natural t a n k was m a i n t a i n e d t h r o u g h o u t t h e p e r i o d o f f r o m 30 t o 36 d a y s , fed daily with Clark's (generally p o o l and p l a c e d to c i r c u l a t e water t a n k s , one q u a r t e r o f t h e volume was photoperiod of the outdoor trout S_. g a i r d n e r i i c a n t a k e n from the o u t d o o r h o l d i n g As i t was 'Fish Rainbow c o u l d be c o n t r o l l e d a c c u r a t e l y w i t h h e a t i n g a n d units. Age B.C. d u r i n g b o t h summer a n d w i n t e r of experiments. 60 g a l l o n s t a i n l e s s P o r t Moody, outdoor tank w i t h In a c c l i m a t i o n e x p e r i m e n t s , 18 f i s h ) were T r o u t Farm, and f e d ad l i b on C l a r k ' s ( J . R. C l a r k Co., netted i n a large averaging about 'Fish and the f i s h were Feed'. (Salvelinus fontinalis), lake namaychus) a n d t h e s p e c k l e d - l a k e h y b r i d , trout splake, were made a v a i l a b l e b y t h e U n i v e r s i t y o f T o r o n t o L a b o r a t o r y for E x p e r i m e n t a l Limnology, Ontario. acclimated Immature fish Southern Research Station, (6-15 cm i n l e n g t h ) were i n c i r c u l a t i n g water Maple, thermally tanks a t the r e s e a r c h station. 13 Trematonus b o r c h g r e v i n k i Sound, A n t a r c t i c a d u r i n g Brains from assayed i n h a b i t e d by t h i s in the o r d e r waters with DeVries, 2. The t e m p e r a t u r e average o f 0.1°C. This of the waters -1.9°C, w i t h a n n u a l v a r i a t i o n s species has not been recorded t h a n 2°C Preparations o f Rainbow T r o u t d i s t i l l e d w a t e r and f r e e z e solubilization steps Brain Acetylcholinesterase dried. volume o f The p r o c e d u r e f o r o f t h e membrane b o u n d enzyme was b a s e d o n t h e e x t r a c t i o n technique described by Morton were c a r r i e d o u t i n a 4 ° C c o l d room. b r a i n s were d i s p e r s e d i n c o l d n-butanol (1955). A l l Freeze dried (1, g d r i e d t i s s u e t o 50 m l s o l v e n t ) by g r i n d i n g w i t h a m o r t a r and p e s t l e . s u s p e n s i o n was stirred gravity pellet re-extracted the with then c e n t r i f u g e d -20°C. acetone n - b u t a n o l as b e f o r e . After The p e l l e t was dispersed and the i n d r y a c e t o n e a t -20°C, a t 10,000 x g r a v i t y f o r d r i e d in. v a c u o o v e r c a l c i u m removal o f the organic d r i e d powder was stirred a t 10,000 x discarded t h e p e l l e t was A f t e r complete The The s u p e r n a t a n t was f o r 5 minutes and c e n t r i f u g e d 20 m i n u t e s . at f o r 2 hours, f o r 15 m i n u t e s . centrifuging stirred in ( s e e Somero a n d P o o l e d b r a i n s were h o m o g e n i z e d i n a s m a l l butanol until 1967). Preparation cold Somero. d r i e d and s t o r e d a t -20°C temperatures higher Enzyme (a) 1969. fish i n McMurdo t h e summer o f 1965 b y D r . G. N. 6 f i s h were f r e e z e i n November were c a p t u r e d chloride solvents t a k e n up i n c o l d 10 buffer, pH 7.2, gravity f o r one h o u r t o remove i n s o l u b l e m a t e r i a l . M tris-HCl f o r 2 hours and c e n t r i f u g e d a t 30,000x The s u p e r n a t a n t was brought to ammonium s u l p h a t e , at and the to s e t t l e supernatant adjusted ammonium s u l p h a t e . s e d i m e n t was 20 for at stored before The 50 hour, then p e l l e t was percent solid centrifuged discarded saturation with 10,000 x i n d i s t i l l e d water. i n 5 percent l e a s t s i x months w i t h o u t s o l u t i o n was dialysed against saturated loss of 10 ^ gravity This preparation ammonium activity. The M tris-HCl buffer, - the sulphate enzyme pH 7.2 Brain and washed and use. Preparation Spinal of A c e t y l c h o l i n e s t e r a s e Cord f o r B r a i n and s p i n a l c o r d were d i s s e c t e d o u t , volume o f preparation and 2,000 rpm was frozen f o r 20 drawn o f f a n d (c) E l e c t r i c A Eel u s e d as a bench c e n t r i f u g e . a s o u r c e o f AChE f o r purified preparation organ of e l e c t r i c (Electric V) . an T h i s m a t e r i a l had (one^jL m o l a r u n i t w i l l activity on 8.0 The The at supernatant electrophoresis. Acetylcholinesterase Sigma C h e m i c a l Company m i n u t e a t pH c o l d d i s t i l l e d water. thawed s i x t i m e s t h e n s p u n m i n u t e s on partially f r o m the e l e c t r i c from T r o u t Electrophoresis homogenized i n a s m a l l was f o r one centrifugation at t a k e n up frozen to saturation with After p r e c i p i t a t i o n overnight c o l l e c t e d by m i n u t e s and c o u l d be (b) percent 10, 000 x g r a v i t y f o r 10 m i n u t e s . solid for left 20 at 37°C) and acrylamide e e l was disc extracted purchased from eel Acetylcholinesterase a c t i v i t y of hydrolyze o f AChE l,00Cyu M o l a r electrophoresis. type units/mg 1/AMole o f a c e t y l c h o l i n e gave a s i n g l e b a n d o f the AChE per (d) Preparation of Trematomus b o r c h g r e v i n k i brain Acetylcholinesterase 4 ml of u s e d as 3. Freeze dried brains 10 tris-HCl buffer, M - 2 a source 6 f i s h were h o m o g e n i z e d pH Assay of Acetylcholinesterase the acetylcholine AChE a c t i v i t y rate can of hydrogen was assayed TTA 31) gives be i n an The + H^O ~ • ^ Choline conveniently a pH volume o f the volume o f In t h i s titrator stat with against rate 2 ml. of a c e t y l c h o l i n e buffer, atmospheric carbon dioxide was time hydrolysis. enzyme and substrate controlled reaction vessel. standardized by In a l l experiments t o compensate f o r any or as unit (ACh) type uptake non-enzymic h y d r o l y s i s o f of substrate. Electrophoresis Electrophoretic by M) potassium b i p h t h a l a t e . b l a n k s were r u n Gel - 2 activity (Lauda B r i n k m a n , K-2/R) s u r r o u n d i n g the (generally 10 the Copenhagen, sodium h y d r o x i d e T e m p e r a t u r e was appropriate 4. s t u d y , AChE sodium h y d r o x i d e added per coupled to a water j a c k e t titration following (Radiometer, a c c u r a t e l y with a c i r c u l a t i n g water bath Sodium h y d r o x i d e was + acetic acid d e t e r m i n e d by r e a c t i o n mixture contained in a total preparation reaction automatic a measure o f basic This Activity ion production. o p e r a t e d as titrant. 7.2. in o f b r a i n AChE. AChE c a t a l y s e s The from standard acrylamide separation of esterases disc electrophoresis was (Davis, carried 1964), out using 16 a 4 percent stacking gel, a 7 percent 5 x 10 M tris-glycine - 3 applied tank b u f f e r , s e p a r a t i n g g e l , and pH 8.7. Samples were t o t h e t o p o f t h e s t a c k i n g g e l a n d r u n f o r 90 m i n u t e s a t 3 mA p e r tube and a t 4°C. E s t e r a s e a c t i v i t y was l o c a l i z e d w i t h i n t h e g e l b y t h e «C n a p h t h y l 1959) . 4 x 10 acetate-diazonium After - 2 completion salt technique then and Hunter, o f t h e r u n , g e l s were p l a c e d i n M t r i s - H C l b u f f e r pH 7.1 f o r 10 m i n u t e s t o i n h i b i t p r e c i p i t a t i o n o f t h e dye d u r i n g s t a i n i n g and (Market transferred to a solution ( A l l e n e t a_l, 1965) containing«^naphthylacetate (Sigma C h e m i c a l Co., 40 mg/100 ml) a n d F a s t B l u e R.R. (Sigma C h e m i c a l Co., 70 mg/100 ml) i n 4 x 1 0 ~ tris-HCl buffer, then pH 7.1. 2 M G e l s were r e a c t e d f o r 20 m i n u t e s a t 2 5°C placed i n an a c i d - a l c o h o l s o l u t i o n (ethanol: .10 p e r c e n t acetic acid, reduce nonspecific staining. water, t h e g e l s c o u l d be s t o r e d i n d e f i n i t e l y a t 4 ° C . 5. Protein salt 3:2) f o r 30 m i n u t e s t o s t o p t h e r e a c t i o n a n d After rehydration i n d i s t i l l e d Determinations P r o t e i n c o n c e n t r a t i o n s o f AChE p r e p a r a t i o n s were e s t i m a t e d b y t h e m e t h o d .of Lowry e t a__ (1951) . diluted to a concentration o f approximately Samples were 20/u.g p r o t e i n / m l . A s t a n d a r d c u r v e was p l o t t e d w i t h o v a l b u m i n i n t h e r a n g e 5 to 100/<A.g/ml f o r e a c h s e t o f d e t e r m i n a t i o n s . 6. Sucrose Gradient Centrifugation Sucrose g r a d i e n t s were p r e p a r e d d u a l chamber g r a d i e n t maker. i n 5 ml tubes w i t h a Samples were r u n o n t h e S p i n c o model L p r e p a r a t i v e u l t r a c e n t r i f u g e equipped w i t h an SW 39 rotor. For s t u d i e s o f the e f f e c t sedimentation o f e l e c t r i c g r a d i e n t s were p r e p a r e d o f temperature e e l AChE, in 2 x 10 - 2 on t h e 5 t o 20 p e r c e n t sucrose M sodium b a r b i t o n e buffer, pH 7.2, a n d c o n t a i n e d 2 x 10 "'" M magnesium c h l o r i d e . A - 0.2 m l sample o f AChE d i s s o l v e d chloride and s o l u t i o n was i n t h e same b u f f e r - m a g n e s i u m l a y e r e d onto the t o p of each g r a d i e n t r u n f o r s i x h o u r s a t 35,000 rpm a t t h e s p e c i f i e d Drop c o u n t f r a c t i o n s were c o l l e c t e d b y g r a v i t y a n d a s s a y e d f o r AChE a c t i v i t y b y t h e s t a n d a r d method. each temperature were c a l c u l a t e d In the case a c t i v i t y was assay, e t a l (1967). readings. d e t e c t e d i n s i t u b y t h e method o f J o l l e y In t h i s o f the r u n . technique sucrose gradients are s o l u t i o n and photopolymerized G r a d i e n t s were f o r m e d b y 2.3 m l o f a 7.5 p e r c e n t a c r y l a m i d e 2 x 10 ^ refractometer t o o low t o measure c o n v e n i e n t l y b y t h e s t a n d a r d i n acrylamide completion from Gradient densities a t o f . t r o u t b r a i n AChE p r e p a r a t i o n s , where t h e t h e enzyme was prepared temperature. M magnesium c h l o r i d e after placing gel solution containing i n the d i s t a l chamber o f t h e g r a d i e n t maker a n d 2.5 ml o f t h e same s o l u t i o n c o n t a i n i n g 20 p e r c e n t in sucrose i n t h e o u t l e t chamber. 0.2 ml o f t h e 7.5 p e r c e n t a c r y l a m i d e applied to the t o p o f the prepared The sample, gel solution, dissolved was g r a d i e n t immediately before c e n t r i f u g i n g a n d r u n f o r t e n h o u r s a t 35,000 rpm a n d a t 4 ° C . After completion of each tube o f t h e r u n , w a t e r was to give a f l a t under a f l u o r e s c e n t l i g h t . l a y e r e d onto the top s u r f a c e , a n d the g e l p o l y m e r i z e d The g e l s were t h e n removed from 18 the c e n t r i f u g e t u b e s and stained for esterase described previously for disc electrophoresis. 7. Violet Difference Ultra a. Introduction ultra violet phenomenon has region of caused by the absorption spectrum. The been reviewed by W e t l a u f e r generally considered is that absorption electron transitions amino the 230 r e g i o n r e s u l t s m a i n l y from e l e c t r o n in the c a r b o x y l moeity of studies, shifts i n absorption terms of changes the 1961; i n the p r o t e i n molecule obtained spectrum a t a reference Bovey, Thus, b y absorption transitions I n a number tertiary 1960; plotting temperatures temperature of Foss, absorption to induced the changes can spectra i n a t w i n beam s p e c t r o p h o t o m e t e r i n w h i c h the s a m p l e s c a n be reference b. obtained read relative I d e a l l y , the of 1960, t h e UV relative thermally detected. structure protein conformation are be group. s e c o n d a r y and at different i t is s p e c t r a have been i n t e r p r e t e d ( Y a n a r i and M a s s e y e_t a_l, 1966) . spectra tyrosine, whilst peptide this acids in the in 260-300rnytf.i n t e r v a l tryptophan my\A and (1962), and i n the i n the patterns basis of phenylalanine, in as Spectra Proteins e x h i b i t c h a r a c t e r i s t i c the activity to a c e l l h e l d at difference the temperature. Method UV s p e c t r a were d e t e r m i n e d w i t h spectrophotometer equipped with m e a s u r e m e n t s were made i n 1 cm a C a r y 15 recording a c i r c u l a t i n g water bath. cells. Electric e e l AChE All in was dissolved in 2 x 10"^ M s o d i u m p h o s p h a t e b u f f e r , pH t o a c o n c e n t r a t i o n o f 0.15 mg/ml, and against use. this b u f f e r before sample b u f f e r o n l y and temperature. was extensively dialyzed reference cuvette maintained S p e c t r a l scans difference spectrum f o r each replotting the results The were r u n a t the to the sample in triplicate t e m p e r a t u r e was relative 7.2, cuvette and obtained spectrum contained by obtained a RESULTS AND 1. Partial Purification The the relative of Rainbow T r o u t activities e x t r a c t i o n procedure are specific a c t i v i t y of about a four homogenate, fold the of given final titration plots of 2 x Characterization a. Central lO '* M. Although represents original the only crude down t o an activity 5 x 10 ^ - could M not non be ACh. f r o m the Rainbow System Introduction (1957) as and throughout W i t h c r u d e homogenates - Acetylcholinesterases high 1. of A c e t y l c h o l i n e s t e r a s e s Nervous Acetylcholinesterase gave s t r a i g h t l i n e s p l o t s were e n c o u n t e r e d and Trout i n Table preparation a c c u r a t e l y measured below about 2. Brain f r a c t i o n s taken p u r i f i c a t i o n o v e r the AChE c o n c e n t r a t i o n linear DISCUSSION have been d e f i n e d eserine-sensitive esterases acetylcholine concentrations which s p l i t butyryl which are The compound 284C51 Augustinsson inhibited ( g e n e r a l l y 3 to a c e t y l c h o l i n e a t a much h i g h e r choline. by 5 x rate 10 by M) than (Burroughs Wellcome) at - 6 - 5 concentrations greater to 10 M gives a b o u t 100,000 i n h i b i t i o n o f AChE t h a n o f o t h e r ( A u s t i n and b. f r o m 10 Berry, At Central least cholinesterases 1953). M u l t i p l e Forms o f A c e t y l c h o l i n e s t e r a s e Trout fold Nervous esterase a c t i v i t y were gel disc electrophoresis r a i n b o w t r o u t b r a i n and Rainbow System 7 bands o f following acrylamide i n the s p i n a l cord. of observed extracts S p e c i f i c AChE b a n d s from Table 1. Partial Brain. P u r i f i c a t i o n o f AChE f r o m Rainbow Trout b Fraction Activity B r a i n homogenate Purification(X) 8.5 Recovery(%) 100 Butanol s o l u b i l i z e d enzyme 11.9 1.4 107 20% ( N H ) fraction 23.7 2.8 53 32.3 3.8 25 4 SO. 2 20-50% (NH )„ S0 fraction 4 4 a. b. o 2 C acclimated trout Specific a c t i v i t y i s expressed mg p r o t e i n / h o u r as^M ACh hydrolysed/ were d e t e c t e d by t h e i r i n h i b i t i o n with 10 ^ M e s e r i n e a n d w i t h -5 . ~ 10 M 284C51. The AChE b a n d s o b t a i n e d w i t h from rainbow t r o u t a c c l i m a t e d are both the shown i n F i g u r e 1. spinal t o 2 ° , 1 2 ° a n d 1 7 ° C f o r 32 Identical cord preparations. slower f r o m warm a c c l i m a t e d enzyme estimated present r e s u l t s were o b t a i n e d types. AChE migration fish. days with winter, r a t e than On t h e b a s i s o f s t a i n i n g that equal with t o 12°C possess intensity i t was form In f i s h present; captured d u r i n g the i n summer f i s h , the 17°C form i n e x c e s s . h e l d a t 9°C i n the o u t d o o r p o o l d u r i n g autumn a l s o h a d enzymes, w i t h the c o l d c. S p e c i f i c i t y and I n h i b i t i o n Trout does t h e enzyme B r a i n e x t r a c t s from w i l d t r o u t t h e 2 ° C enzyme was enzymes u s u a l l y o c c u r r e d , Substrate trout amounts o f t h e two r a i n b o w enzymes were i n the 12°C f i s h . only from c o l d a c c l i m a t e d Trout acclimated p o p u l a t i o n s were a l s o e x a m i n e d . both Fish both predominating. Studies o f Rainbow Brain Acetylcholinesterases Substrate saturation plots f o r brain extracts 2 ° c a n d 17°C a c c l i m a t e d and preparations p u r i f i e d e x t r a c t s a n d c r u d e homogenates o f b r a i n , a n d w i t h shows a d i s t i n c t l y both brain Figure 3. rainbow t r o u t are g i v e n from i n Figure B o t h enzymes show g r e a t e r a c t i v i t y w i t h 2 ACh than w i t h p r o p i o n y l - c h o l i n e o r b u t y r y l c h o l i n e , and i n each substrate i n h i b i t i o n occurs a t concentrations case above a b o u t _o 3 x 10 M ACh. preparations The r e l a t i v e and e l e c t r i c s u b s t r a t e s and i n h i b i t o r s activities e e l AChE w i t h are given o f rainbow t r o u t individual i n Table 2. No and p a i r e d summation 23 Figure 1. Resolution o f Rainbow T r o u t Acrylamide Gel Disc Electrophoresis B r a i n AChEs b y Electrophoresis. conditions: a t 3 mA a n d 400 v o l t s glycine tank b u f f e r , 90 per g e l . pH 8.7 2°C a c c l i m a t e d trout 17°C a c c l i m a t e d trout 12°C a c c l i m a t e d trout minutes Tris- 24 Figure 2. Substrate S p e c i f i c i t y o f AChE from 2 ° C A c c l i m a t e d Rainbow T r o u t , in 10~ 2 M tris-HCl -2 10 Standard assay b u f f e r , pH 7.2 w i t h . . M sodium h y d r o x i d e as t i t r a n t . temperature 2 ° C . © Acetylcholine iodide _ Propionylcholine A Butyrylcholine iodide iodide Assay 25 Figure 3. Substrate Acclimated S p e c i f i c i t y o f AChE from Rainbow T r o u t . as i n F i g u r e 2. 17°C Standard a s s a y Assay temperature © A c e t y l c h o l i n e -iodide E2 Propionylcholine A Butyrylcholine iodide iodide 15°C. Table 2. Surnmation E x p e r i m e n t s w i t h Effect Choline o f I n h i b i t o r s on H y d r o l y s i s T r o u t and E l e c t r i c Esters and the o f ACh b y Rainbow E e l AChEs R e a c t i o n r a t e (JK M s u b s t r a t e hydrolysed/mg protein/hr) Substrate (2.5 x 10~ M) 2 C trout AChE 3 17 C t r o u t AChE electric eel AChE (xl0~ ) 3 Acetylcholine 54.0 43.2 71.0 9.2 7.3 61.0 Propionylcholine Butyrylcholine 0 A c e t y l c h o l i n e and propionylcholine A c e t y l c h o l i n e and butyrylcholine Propionylcholine butyrylcholine 22.1 11.9 4.3 15.9 64.0 5.3 9.9 3.5 8.0 and 0 A c e t y l c h o l i n e and 5 x 10~ M eserine 0 3 0 A c e t y l c h o l i n e and 1 0 " M 284C51 0 6 A s s a y s were c a r r i e d 0 o u t a t 10 C f o r t h e r a i n b o w a n d a t 2 5°C f o r t h e e l e c t r i c Substrates: 0 Acetylcholine butyrylcholine t r o u t enzymes e e l AChE iodide; iodide. propionylcholine iodide; 27 of activity occurred w i t h any s u b s t r a t e that butyryl or propionyl cholinesterases to the r a t e o f h y d r o l y s i s . either pair tested, Hydrolysis indicating are not c o n t r i b u t i n g o f 2.5 x 1 0 M ACh b y - 3 t h e 2 ° . a n d 1 7 ° C t r o u t AChE o r t h e e e l enzyme, 5 x 10 -5 completely i n h i b i t e d with M eserine, M 284C51. These r e s u l t s o b t a i n e d inhibitors i n d i c a t e t h a t e s s e n t i a l l y a l l o f the with a c t i v i t y o f the t r o u t b r a i n e x t r a c t s and w i t h specific detected was -6 10 substrates and esterase by the a s s a y method c a n be a t t r i b u t e d t o AChE. d. E f f e c t o f pH o n A c e t y l c h o l i n e s t e r a s e The bell shaped p H - a c t i v i t y curves f o r the rainbow t r o u t AChEs shown i n F i g u r e 4 a r e s i m i l a r t o those w i t h AChEs f r o m a v a r i e t y o f s o u r c e s Bull e. Activity and L i n d q u i s t , ( B e r n s o h n e t a_l, 1963; 1968; S i l m a n a n d K a r l i n , Sucrose Gradient obtained 1967). C e n t r i f u g a t i o n o f Rainbow T r o u t Brain Acetylcholinesterases The brain r e s u l t s o f the experiments preparations up i n a c r y l a m i d e were c e n t r i f u g e d detected, as fish. on s u c r o s e g r a d i e n t s g e l s o l u t i o n a r e shown i n F i g u r e r e s u l t s were o b t a i n e d acclimated i n which rainbow with extracts In each case 5. made Identical from b o t h 2° and 17°C 3 bands o f e s t e r a s e activity t h e c e n t r a l b a n d s e d i m e n t i n g i n t h e same p o s i t i o n electric e e l AChE. Inhibition with 10~ 5 M 284C51 a n d -4 10 trout M eserine d i d n o t remove a n y one band, b u t g r e a t l y reduced the i n t e n s i t y o f the c e n t r a l band. were 28 Figure 4. Influence o f pH on the A c t i v i t y o f Rainbow T r o u t B r a i n AChEs. Sodium phosphate buffer, -2 10 M, was used i n the range pH 6-8, and -2 -2 t r i s - H C l b u f f e r , 10 M, c o n t a i n i n g 10 M sodium c h l o r i d e from pH 7.5 t o © 9.5. 17°C a c c l i m a t e d rainbow Assay temperature trout. 17°C. o E3 2 C a c c l i m a t e d rainbow Assay temperature 2°C. trout. Rate (uM ACh hydrolyzed / m g protein /hr) 29 Figure 5. Sucrose Gradient Trout C e n t r i f u g a t i o n o f Rainbow and E l e c t r i c 20 p e r c e n t 7.5 p e r c e n t 2 x 10 layered - 1 sucrose E e l AChEs. gradient acrylamide M MgC-L_. on t o p . A 5 ml 0 t o was formed i n gel solution containing Samples o f 0.2 ml were Centrifugation conditions: 10 h o u r s a t 100,000 x g r a v i t y a t 4 ° C . centrifugation and stained t h e g e l s were f o r esterase After photopolymerized activity. electric eel AChE 2 ° C acclimated frout 17°C acclimated trout 2° or 17°C ated trout. acclimStained in the presence T0 /M _6 284C51 of 30 The following conclusions of these r e s u l t s . in 3 molecular 1. Rainbow t r o u t b r a i n e s t e r a s e s s i z e c l a s s e s , AChE p r o b a b l y s h a r i n g w i t h a t l e a s t one o t h e r esterase. warm a n d c o l d a c c l i m a t e d s i m i l a r molecular weight, 3. 2. t r o u t and from e l e c t r i c a b o u t 260,000 both e e lare of (Leuzinger from amount o f m a t e r i a l to characterize e t a_l, 1 9 6 9 ) . Trematomus from the f o l l o w i n g r e s u l t s t h a t available i t t h i s enzyme s y s t e m a s f u l l y as was done f o r t h e r a i n b o w t r o u t A C h E ' s . by a class Bra-in Because o f the s m a l l not possible occur The AChEs f r o m Characterization of Acetylcholinesterase borchgrevinki was c a n be made o n t h e b a s i s the t o t a l I t was c o n c l u d e d activity t h e a s s a y c o u l d be a t t r i b u t e d t o a s i n g l e AChE detected species. —6 1. The p r e s e n c e o f 2 x 10 M 284C51 i n t h e a s s a y c o m p l e t e l y i n h i b i t e d ACh h y d r o l y s i s . 2. Acrylamide gel electrophoresis of the crude homogenate gave f o u r b a n d s o f e s t e r a s e brain activity; only — ft one o f t h e s e b a n d s was i n h i b i t e d b y 5 x 10 and 10 M 284C51 -4 4. M eserme. E f f e c t o f A s s a y T e m p e r a t u r e upon t h e K i n e t i c s o f A c e t y l c h o l i n e Hydrolysis a. by Acetylcholinesterase E f f e c t o f T e m p e r a t u r e o n t h e Maximum V e l o c i t y o f Acetylcholine Hydrolysis Numerous a t t e m p t s h a v e b e e n made t o e s t a b l i s h r e l a t i o n s h i p s between the thermal and temperature tolerances of poikilotherms d e p e n d e n t c h a r a c t e r i s t i c s o f t h e i r enzymes. The 31 c h a r a c t e r i s t i c s most commonly i n v e s t i g a t e d a r e f o r o p t i m a l enzyme a c t i v i t y a t V max enzyme t h e r m o s t a b i l i t y . recentlyby L i c h t others. (1967), I n most c a s e s b o t h temperatures levels of substrate, Studies of this Read the type have been (1967), a n d Ushakov thermal optima and and reviewed (1967) among thermal d e n a t u r a t i o n occur a t temperatures above t h o s e in i n t e r e s t with reference to the the e n v i r o n m e n t . Of p a r t i c u l a r present study are r e s u l t s Kusakina (1963) h a s the temperature for a t which of muscle thermal environment 50 a positive muscle of cottoid fish. a c t i v i t y was muscle Similarly, e x c i t a b i l i t y ceased. (1964) f o u n d no d i f f e r e n c e habitat that temperature certain required and f o r the organism, n o t be Kfigrelli Alexandrov of proteins is clearly to not thermal setting t h e r m o s t a b i l i t y per se, b u t r a t h e r , i n turn a l t e r to a molecule a c t i v i t y and Changes i n t h e r m a l l y d e p e n d e n t (1969) between the p r o p e r t y s u b j e c t f o r s u c h f u n c t i o n s as c a t a l y t i c f l e x i b i l i t y may which cholinesterase c o n f o r m a t i o n a l f l e x i b i l i t y o f the p r o t e i n regulation. which incubation above t h o s e a t killifish. the r e s i s t a n c e the temperature, Baslow and b u t where t h e r m o s t a b i l i t y limits s e l e c t i o n may after and at i n c a s e s where a c o r r e l a t i o n e x i s t s temperature denaturation, lost i n the l e v e l s o f a c t i v i t y o f c o n t r o l and h e a t k i l l e d i s lost, temperature increased with increasing habitat 12° t o 15°C proposed relationship ihactivation, The and o c c u r r e d a t t e m p e r a t u r e s has cholinesterases. excitability cholinesterase percent of cholinesterase 30 m i n u t e s obtained for f i s h demonstrated between the temperature encountered allosteric conformational the t h e r m a l d e n a t u r a t i o n c h a r a c t e r - istics o f the molecule. c o n f o r m a t i o n a l changes detail i n following Criticism Certain aspects of thermally i n protein structure sections of this against dependent are discussed i n thesis. the use o f t h e r m a l optima f o r maximum enzyme a c t i v i t y a n d t h e r m o s t a b i l i t y a s m e a s u r e s o f t h e r m a l adaptation i s generally of l e v e l e d a t the non-physiological the e x p e r i m e n t a l methods. a t which enzyme a c t i v i t y F o r example, the a c t u a l nature temperature i s m a x i m a l depends o n s u c h f a c t o r s a s a s s a y t i m e , a n d t h e V max l e v e l s o f s u b s t r a t e e m p l o y e d a r e g e n e r a l l y f a r i n excess o f probable p h y s i o l o g i c a l substrate concentrations. Similarly, dependent upon s u c h f a c t o r s pH, environment, ionic and o t h e r c e l l u l a r Bowen a n d K e r w i n , protein thermostability as presence or.absence i s highly of substrate, a n d b i n d i n g o f t h e enzyme t o membranes structures ( V e s s e l l a n d Y i e l d i n g , 1966, 1956; Cheeseman e_t a_l, c o r r e l a t i o n between iri v i t r o 1967) . Thus a n y enzyme t h e r m a l o p t i m a o r t h e r m o s t a b i l i t y w i t h environmental temperature, may be s i m p l y fortuitous. Arrhenius rainbow are from t r o u t a c c l i m a t e d t o 2° and 17°C and f o r e l e c t r i c e e l shown i n F i g u r e 6. the r e a c t i o n of p l o t s o f l o g V o p t . v e r s u s 1/T f o r AChEs the f i s h . i n each c a s e t h e maximum v e l o c i t y o f i n c r e a s e s w i t h temperature beyond the thermal range W i t h b r a i n AChE f r o m Trematomus b o r c h g r e v i n k i t h e a c t i v i t y o f t h e enzyme a t h i g h l e v e l s o f s u b s t r a t e (10 M ACh) i s t w i c e as g r e a t a t 10°C as i t i s a t 2°C (see T a b l e 5 ) . This f i s h has n o t been r e c o r d e d i n waters optimal temperature o f enzyme s t r u c t u r e , f o r enzyme a c t i v i t y , above 2 ° C . Thus, t h e and thermal stability are probably not important factors i n 33 F i g u r e 6. A r r h e n i u s P l o t s o f AChE A c t i v i t y f o r the Rainbow Trout and E l e c t r i c E e l Enzymes. -2 Standard assay i n 10 M tris-HCl buffer, pH 7.2 w i t h V opt. l e v e l s o f ACh. o © 17 C a c c l i m a t e d t r o u t AChE 13 2°C a c c l i m a t e d t r o u t AChE A e l e c t r i c e e l AChE .do^ 6o| 34 setting thermal I t has adapted Although temperature Brown, 1968) has thermal energy a l o w e r i n g o f the energy been demonstrated 1963; Kwon and Olcott, 1965; no means u n i v e r s a l the be (Ea). environmental 1964; (Vroman Hochachka, Hochachka and 19 6 8 ) . which decrease t r o u t and as the t e m p e r a t u r e ( W i l s o n and Cabib, v a r i e t y of sources interpreted 1956), and (Chadwick, the decrease reaction. straight They proposed line through 1957). temperature temperature range where t h e o t h e r s t e p i s s l o w e r . and are comparable. the r a t e energy of a c t i v a t i o n . versus 1/T and vary with plots range a different j o i n e d by a c u r v e d p o r t i o n over as limiting curved e e l AChE from Cabib a (1956) for electric s t e p f o r the eel overall t h a t A r r h e n i u s p l o t s would give a i s rate temperatures Similarly W i l s o n and steps rates eel activation f o r an e l e c t r i c i n the r a t e the limiting, energies of for cholinesterases i n Ea w i t h AChE i n t e r m s o f a change electric i s raised. p l o t s have been 'reported p r e v i o u s l y Km of a c t i v a t i o n Somero and (Read, in cold i s low may i n a number o f c a s e s AChEs t h e c u r v e d A r r h e n i u s p l o t s y i e l d both species. r a t e s o f enzyme a c t i v i t y I n t h e c a s e o f the r a i n b o w be i n these a c o r r e l a t i o n b e t w e e n Ea a n d i t i s by Somero, that where a v a i l a b l e through such f o r AChE a c t i v i t y been argued organisms maintained and limits The straight These two the t h e r m a l It i s also of line range need not g i v e s t r a i g h t that would where at higher the s t e p which had suggested log V the lower max l i n e s when b o t h V (see b e l o w ) . the i n the lines curve would f l a t t e n approached temperature where one max Non-linear Arrhenius plots o b t a i n e d w i t h amino o x i d a s e h a v e b e e n r e l a t e d temperature dependent conformations to a t r a n s i t i o n o f t h e enzyme b e t w e e n ( K o s t e r and V e e g e r , 1968; M a s s e y e t a_l, Recently, e v i d e n c e has been p r e s e n t e d f o r s i m i l a r dependent t r a n s i t i o n s between m u l t i p l e esterases and AChE f r o m e r y t h r o c y t e s forms from 1966). temperature- o f serum (Main, cholin- 1969). E n e r g i e s o f a c t i v a t i o n f o r the t r o u t e e l AChEs were c a l c u l a t e d two and the r e l a t i o n s h i p electric l o g (K - K )= —* E a 4.6 (-^— 1^ absolute -ji—) where K a n d T-/ 1 temperatures activation. drawing The 2 n are r e a c t i o n and T_ and Ea Ea v a l u e s a t a s p e c i f i c velocities at i s the energy t e m p e r a t u r e was a t a n g e n t t o the A r r h e n i u s curve a t t h a t relationships b e t w e e n Ea a n d temperature of o b t a i n e d by temperature. are given i n Table 3. For given temperature difficult value the rainbow enzyme a t 2°C. electric ( 2 5°C) The v a l u e o f 1.9 concluded that E f f e c t o f Temperature effectors are as the K c a l / m o l e o b t a i n e d f o r the temperature o f the t r o u t enzymes a t 2°C. no c l e a r r e l a t i o n s h i p e x i s t s between habitat studied. on E n z y m e - S u b s t r a t e C u r r e n t m o d e l s o f enzyme r e g u l a t i o n of results t h a n the v a l u e of the 2°C a p p a r e n t e n e r g i e s o f a c t i v a t i o n o f AChE and i n the s p e c i e s any o f a d a p t i v e advantage, 17°C enzyme i s l o w e r a t 17°C i s lower than e i t h e r temperature b. i n terms The e e l enzyme a t t h e p r o b a b l e h a b i t a t I t must be the enzymes t h e Ea v a l u e s a t a r e e s s e n t i a l l y t h e same. to i n t e r p r e t f o r the trout i n m o d i f y i n g enzyme-substrate Affinity stress the affinities importance (Atkinson, 36 Table 3. Apparent Energies T r o u t and E l e c t r i c AChE s o u r c e of Activation E e l AChEs a t s e v e r a l (°C) 2°C a c c l i m a t e d t r o u t (Ea) f o r t h e Rainbow- E a temperatures (^cal/mole) 2 3.6 17 1.8 2 4.1 17 2.1 25 1.9 17 3.0 o 17 C a c c l i m a t e d Electric eel trout 1966; Stadtman, 1966). I t has been s u g g e s t e d r e c e n t l y t h e c a s e o f enzymes from p o i k i l o t h e r m s , a role analogous by a l t e r i n g to that of p o s i t i v e enzyme-substrate b r i n g about compensatory (Hochachka and The and of Somero, i n s u c h a way as of the enzyme, 7 and (as m e a s u r e d b y c o n s t a n t , Km) of rainbow the and a s s a y reciprocal temperature, t h e r m a l range o f t h e enzymes f o r the ACh and approach maximal v a l u e s c o r r e s p o n d i n g to those a t which acclimated. This case o c c u r s a t about 25°C, at a temperature temperature A temperature has been o b s e r v e d f o r p y r u v a t e k i n a s e s from rainbow 1968) for lactate Trematomus (Hochachka and Hochachka, and dehydrogenases 1969), and and trout, 1968) dehydrogenases lungfish fructose trout (Somero a n d tuna, and Hochachka, lungfish, and k i n g - c r a b f o r glucose-6-phsophate 6-phospho-gluconate 1969) , f o r s a l m o n Somero, from i n this similar and e n v i r o n m e n t a l Trematomus b e r n a c c h i i and corresponding closely temperature. c o r r e s p o n d e n c e b e t w e e n minimum Km fish were e e l enzyme; the minimum Km t o the p r o b a b l e minimum h a b i t a t the a n t a r c t i c each vary with the f i s h r e l a t i o n s h i p between h a b i t a t a l s o h o l d s f o r the e l e c t r i c that of (minimum Km) temperatures Km trout 8. p a r t o f the b i o l o g i c a l the a f f i n i t i e s temperature reactions organism I n t h e c a s e o f t h e t r o u t AChEs i t i s a p p a r e n t the upper to 1968). the a p p a r e n t M i c h a e l i s over play i n t h e r a t e s o f enzyme t h e r m a l range e e l AChE f o r ACh shown i n F i g u r e s may negative effectors r e l a t i o n s h i p s b e t w e e n the a f f i n i t y electric are and affinities changes throughout the b i o l o g i c a l temperature that i n (Somero dehydrogenase f r o m k i n g - c r a b (Somero, diphosphatases (Behrisch, 38 Figure 7. E f f e c t of Assay Temperature on the Km o f ACh f o r AChEs from 17° and 2°C A c c l i m a t e d -2 Rainbow T r o u t . tris-HCl buffer, Standard assay xn 10 pH 7.2. M The enzymes were assayed at.ACh c o n c e n t r a t i o n s i n the range 4 3 10 to 5 x 10 M and Km v a l u e s were determined (1/V versus from d o u b l e - r e c i p r o c a l p l o t s 1/ ACh ). @ 17°C a c c l i m a t e d t r o u t AChE El 2°C a c c l i m a t e d t r o u t AChE - Temperature (°C) 39 Figure 8. Effect o f Assay Temperature ACh f o r E l e c t r i c in 10~ 2 M tris-HCl buffer, enzyme was in E e l AChE. Standard pH 7.2. assay The a s s a y e d a t ACh c o n c e n t r a t i o n s the range 10 -4 t o 5 x 10 v a l u e s were d e t e r m i n e d plots o n t h e Km o f (1/V v e r s u s from 1/ ACh ) . -3 M a n d Km double-reciprocal 5 01 0 l I i 1 1 1 1 l 5 10 15 20 25 30 35 40 Temperature (°C) 1969; B e h r i s c h and Hochachka, isocitrate citrate dehydrogenases synthases At physiological is clear. increase f o r rainbow and Lewis, above t h a t a t w h i c h significance i n temperature would t h e v e l o c i t y o f t h e enzyme r e a c t i o n , of temperature. characteristic reaction This rate remains relationship be e x p e c t e d t o this relatively o f b o t h forms o f t r o u t AChE. The 'warm' f o r m the f o r m shows t h e r e l a t i o n s h i p above a b o u t i s reflected substrate independent type o f temperature-independence i s r e l a t i o n s h i p a t temperatures effect effect i s affinity. shows t h i s 'cold' and Km i s minimum, t h e o f t h e Km-temperature Although a r i s e the o v e r a l l NADP 1970). counteracted by a decrease i n enzyme-substrate Hence, trout (Moon, p e r s o n a l c o m m u n i c a t i o n ) (Hochachka temperatures 1969), i n the r a t e s above a b o u t 1 7 ° C ; 2°C. This of acetylcholine hydrolysis a t c o n c e n t r a t i o n s a p p r o a c h i n g t h e minimum Km (Table 4 ) . -4 In t h i s c o n n e c t i o n , a r e c e n t e s t i m a t e o f 2.16 x 10 c o n c e n t r a t i o n o f ACh r e l e a s e d into the s y n a p t i c M f o r the space o f the v e r t e b r a t e motor e n d p l a t e c o r r e s p o n d s c l o s e l y t o t h e minimum Km v a l u e o f b o t h 1969). effects t r o u t AChEs (Namba a n d Grob, A considerable overcompensation o f temperature upon r e a c t i o n _o f o r the a c c e l e r a t i n g rate i s observed with the o 2 C t r o u t enzyme a t 18 C, a n d w i t h t h e e l e c t r i c 40°C (Table 4 ) . physiological However, this importance. e f f e c t may be o f l i t t l e In the case o f the 2°C t r o u t the decrease i n r e a c t i o n r a t e i n v i v o by the appearance e e l AChE a t i s presumably enzyme compensated f o r o f t h e 1 7 ° C enzyme, w h i l e t h e e l e c t r i c e e l may n o t e n c o u n t e r w a t e r temperatures as h i g h as 40°C. 41 Table 4. Rates for o f ACh H y d r o l y s i s a t Minimum Km AChEs f r o m Rainbow T r o u t , E l e c t r i c Levels o f ACh E e l and Trematomus AChE source ACh 2°C acclimated trout 2.5 x 17°C acclimated trout (M) 10~ 2.5 x 10 Electric eel 10 Temperature a t minimum Km (°C) 4 4 17 25 4 -4 Trematomus borchgrevinki a. Rate 1.5 x 10 of hydrolysis o f minimum b. The r a t e to V/V (minimum Km) a 0 0.79 5 1.10 8 1.10 12 0.90 18 0.61 11 0.61 13 0.80 22 1.00 27 1.20 15 0.42 20 0.92 30 1.10 35 1.10 40 0.65 10 0.51 a t assay temperature/rate a t temperature Km o f ACh h y d r o l y s i s the r a t e Assay. temperature (°C) a t 2°C a t 10°C i s e x p r e s s e d relative At lower thermal relationship i s reversed. enzyme t h e Km r i s e s 15°C, reaching t h e Km-temperature F o r t h e 'warm' f o r m o f t h e t r o u t s h a r p l y as the temperature a value minimum v a l u e . so h i g h extremes falls a t 10°C t h a t i s about 4 times the Thus, a t 2 ° C t h e Km o f t h e enzyme i s p r o b a b l y a s t o make t h e enzyme e s s e n t i a l l y inactive a t low a n d presumably p h y s i o l o g i c a l s u b s t r a t e c o n c e n t r a t i o n s . a fall i n temperature increase from 20°C t o 15°C l e a d s i n t h e Km o f t h e e l e c t r i c enzyme-substrate rates affinity i s reflected This Trematomus b o r c h g r e v i n k i , a v a i l a b l e was s u f f i c i e n t temperatures. i n a r e d u c t i o n o f the (Table 4 ) . t h e amount o f enzyme o n l y f o r Km d e t e r m i n a t i o n s Lineweaver-Burk p l o t s o b t a i n e d t h e c r u d e b r a i n homogenate a r e p r e s e n t e d effect several o f assay temperature substrate on Km, concentrations, the t r o u t and e l e c t r i c r e a c t i o n rates given i n Figure 9. The and on r e a c t i o n r a t e s a t are given e e l AChEs, i n Table a t two a t 2°C and 10°C i n Table the a f f i n i t y Trematomus enzyme f o r ACh c h a n g e s m a r k e d l y w i t h The decrease i n o f ACh h y d r o l y s i s a t low s u b s t r a t e c o n c e n t r a t i o n a t For with Similarly, to a 3 f o l d e e l enzyme. t e m p e r a t u r e s b e l o w t h e minimum Km p o i n t with below 5. As o f the temperature. 5 show t h a t a t low s u b s t r a t e -4 concentrations (below 5 x 10 overcompensation ACh and forreaction rate. i s considerable F o r example, a t 1.5 x 1 0 t h e r a t e o f ACh h y d r o l y s i s a t 1 0 ° C i s o n l y rate as M ACh) t h e r e a t 2°C. Again, this; e f f e c t Trematomus b o r c h g r e v i n k i i s of l i t t l e 52 p e r c e n t importance - 4 o f the i n vivo does n o t i n h a b i t w a t e r s above 2 ° C , d i e s w i t h i n 81 m i n u t e s a t 1 0 ° C (Somero a n d D e V r i e s , 1967). M 43 F i g u r e 9. E f f e c t o f Assay Temperature on the Km o f ACh f o r Trematomus b o r c h g r e v i n k i AChE. Lineweaver- Burk P l o t s a t 2°C (M ) and 10°C ( © ) . Standard assay i n 1 0 pH 7 . 2 . - 2 M tris-HCl buffer, Table 5. Effect o f Temperature Hydrolysis u p o n t h e Km a n d Rate o f ACh f o r B r a i n AChE f r o m Trematomus borchgrevinki Reaction rate ^nM ACh h y d r o l y s e d / m l / h r ) Parameter ACh 10" 10°C 46 91 49 50 39 26* (M) 3 5 x 10" 4 2.5 x 1 0 " 1.5 x 10 Km 2°C 4 -4 31 a 1.5 x 1 0 ~ a. a 16 d 4 x 4 Values obtained by e x t r a p o l a t i o n Burk p l o t s . from 10~ Lineweaver- 3 45 Clearly, more d a t a must be Km-temperature such relationships a remarkably The rate, o b t a i n e d b e f o r e the c a n be a s s e s s e d f o r AChE expressed as Q--, over o f minimum Km temperature Trematomus AChEs a r e g i v e n i n T a b l e and electric e e l AChEs a 2 t o 3 f o l d approximately Main kinetic from Conformation (1969) has 6. above the electric F o r the i n Km over 10°C hydrolysis value. Changes i n Km solubilized presented evidence observed with such enzyme. indicating e r y t h r o c y t e AChE a r e I f t h e Km-temperature the s o l u b i l i z e d f i s h AChEs a r e aggregation i t i s d i f f i c u l t effect could occur t o see how that exists that artifact o f the the e f f e c t electric by t h e Km-temperature iri v i t r o of temperature e e l AChE o v e r temperature was c e n t r i f u g a t i o n and assay Thus, relationship system. relationships Km-temperature the range i n v e s t i g a t e d by ultraviolet possibility To examine where Km sucrose difference structural i s simply upon t h e m o l e c u l a r of d e p e n d e n t upon the the the dependent in v i v o where t h e enzyme f o r m s a component o f t h e n e u r a l membrane. and Eel Acetylcholinesterase upon t h e r m a l l y i n d u c e d c h a n g e s i n m o l e c u l a r a g g r e g a t i o n the eel trout t h e minimum Km Induced of E l e c t r i c p r o p e r t i e s of bovine reaction c o n s t a n t r a t e o f ACh R e l a t i o n s h i p between T h e r m a l l y Structural ranges change at substrate concentrations approaching c. and f o r the rainbow t r o u t , and m a i n t a i n an of stenothermal species. r e l a t i o n s h i p s b e t w e e n change i n Km temperature will significance an this question, conformation i s markedly of affected gradient spectroscopy. 46 Table 6. Relationship b e t w e e n Km Change a n d Q o f ACh H y d r o l y s i s Approaching Trout, AChE s o u r c e 2°c a t C o n c e n t r a t i o n s o f ACh t h e Minimum Km Electric ACh f o r AChEs f r o m E e l a n d Trematomus (M) Rainbow borchgrevinki Temperature range(C) Q Km 10 acclimated trout 17°C 2.5 x 1 0 2-12 0.9 2.2 2.5 x 10 17-27 1.2 2.4 10 25 - 35 1.1 3.0 2 - 10 0.4 26.8 - 4 acclimated . trout Electric eel Trematomus borchcrrevinki - 4 1.5 x 1 0 " Q-Lo v a l u e s were c a l c u l a t e d Q_0 are o f t h e Rate 1 Q reaction = ( l/ 2) rates v v l 0 4 from / / t l the r e l a t i o n s h i p t 2 a t temperatures where V t-^ a n d t 2 1 and V 2 respectively 47 AChE f r o m electricus has a molecular weight subunit structure S t u d i e s by that the e l e c t r i c organ o f the Changeux ionic increasing at ionic MgClj. Sucrose 15°, 2 5° a n d 10 G r a f i u s e t a l . (19 68) ionic t h e Km environment this 1966) t h e c e n t r i f u g a t i o n medium a t 15 Lineweaver-Burk p l o t s in t h e Km In o f t h e enzyme w i t h sucrose coefficients Km in this sample a n d protein , 25 u and indicate 33 C. sample. under these The However, s i n c e the expected type sedimentation by running method c o u l d n o t of both the the (see M a r t i n a n d Ames, 1961), a n d the solution over be test t o change w i t h to the v i s c o s i t y o f o f the s u c r o s e change conditions. sedimentation c o e f f i c i e n t i s directly proportional f u n c t i o n of temperature The a significant sedimentation behaviour c e n t r i f u g a t i o n medium viscosity o n temperature t h e s t a n d a r d m i g h t be temperature. a s t u d y as the d e t e r m i n a t i o n s were made of p r o t e i n s are g e n e r a l l y determined the t e s t some d e p e n d e n t upon gradient studies of this known s t a n d a r d s w i t h used i n F i g u r e 11 component (Figure 10). o f AChE i s known t o be (Changeux, % of t o t a l a c t i v i t y , with O in 10 patterns obtained at show a s i n g l e m a j o r fraction shown the 33°C f o r e l e c t r i c e e l AChE i n t h e p r e s e n c e f o r the m a j o r i t y o f the a AChEs i s p o l y d i s p e r s i t y of gradient centrifugation p o l y d i s p e r s i t y about As of e l e c t r i c organ have s t r e n g t h s below t h a t o f 2 x M magnesium c h l o r i d e accounting possess ( L e u z i n g e r e_t . a l , 1969) . environment, system 2 x and the s e d i m e n t a t i o n b e h a v i o u r d e p e n d e n t upon t h e o f 260,000 a n d 2tl2(± t y p e (19 66) o f the e e l E l e c t r o p h o r u s is essentially the temperature a range of linear investigated, 48 F i g u r e 10. Sucrose G r a d i e n t Sedimentation of E l e c t r i c E e l AChE a t 15°C 25° C ( © ) and 33°C (A). Profiles ( • ),. Experimental c o n d i t i o n s are g i v e n i n the methods section. relative A c t i v i t i e s are expressed to the f r a c t i o n w i t h the h i g h e s t a c t i v i t y i n each experiment. I 1 1 1 I - I 0 5 10 15 20 25 30 Fraction Number TOP E f f e c t o f Temperature on the Km o f ACh f o r E l e c t r i c E e l AChE Assayed i n the C e n t r i f u g a t i o n Medium.' Linweaver-Burk P l o t s a t 15°C ( I I ) , 25°C 33°C ( A ) . (©) and i t was argued protein of that i f the s e d i m e n t a t i o n c o e f f i c i e n t does n o t change s i g n i f i c a n t l y w i t h sedimentation, distance versus line temperature, or conditions. Marked changes i n p r o t e i n c o n f o r m a t i o n alter f o r a standard set of the s e d i m e n t a t i o n b e h a v i o u r the s e d i m e n t a t i o n c o e f f i c i e n t temperature, w o u l d be w o u l d be One o f t h e enzyme and, changed i n a l i n e a r The plot large to conclude enough t o be (b) c h a n g e s may that either, d e t e c t e d by temperature over a temperature be accompanied by attributed l a r g e Km drawn f r o m Figure fashion with structural a way range 13. A l t h o u g h that spectra with changing protein denaturation. change the sedimentation where t h e Km temperature Thus, a l t h o u g h the Km s m a l l c o n f o r m a t i o n a l changes i n of subunits. difference to those 25°C cannot i n molecular S i m i l a r c o n c l u s i o n s can spectra plotted i n t h e enzyme o c c u r temperature, are s m a l l i n comparison linear. fashion with changes presumably r e s u l t i n g conformational alterations (as a occurred or, t o s u c h m a j o r c h a n g e s as a l t e r a t i o n s the u l t r a v i o l e t temperature f o r the d i f f e r e n c e b e t w e e n 15° a n d aggregation or d i s s o c i a t i o n be unless is clearly in a linear r e l a t i o n s h i p shows a s h a r p c h a n g e . t h e enzyme, t h e (a) no have o c c u r r e d i n such o f t h e enzyme a l t e r e d be and t h e method h a s coefficient c h a n g e s may to of sedimentation distance e e l AChE i s shown i n F i g u r e 12, is left or expected f u n c t i o n o f f r a c t i o n number) a g a i n s t t e m p e r a t u r e electric experimental plots of sedimentation distance against non-linear. plots viscosity, a straight temperature the temperature, should y i e l d molecular aggregation with of in from i n the ultraviolet the a c t u a l absorbance accompanying such events changes as 51 Figure 12. Effect o f T e m p e r a t u r e upon t h e Behaviour o f E l e c t r i c E e l AChE. represents The error Sedimentation t h e mean o f t h r e e bars indicate Each p o i n t determinations. the range about mean, a n d a r e i n t h e o r d e r o f - 0.5 (approximately t 0.08 m l ) . number i s e x p r e s s e d fraction in number t o compensate each group o f experiments Experimental fractions fraction as a f u n c t i o n o f t o t a l t h e number o f f r a c t i o n s methods The for variation collected i n (27 t o 32 fractions). c o n d i t i o n s are g i v e n i n the section. this in _l K o suoipojj I o JO * O N o 1 — o p+oi /0|S| UO|pDJj 52 Figure 13. Ultraviolet Eel Difference Spectra AChE as a F u n c t i o n o f Spectra are p l o t t e d o b t a i n e d a t 2 5°C. of E l e c t r i c Temperature. relative t o the spectrum Wavelength (mu) 53 5. Thermal Accorniaodation, T h e r m a l A c c l i m a t i o n , A d a p t a t i o n t o Temperature the N e r v o u s a. Thermal System physiological range relationships electric at for Acetylcholinesterase u n a f f e c t e d by appears temperature t o l i e i n the shown i n F i g u r e temperatures 14. approximately constant rate o f ACh t h e Trematomus enzyme i n s u f f i c i e n t accommodation and occur over temperature The reaction ranges i s s e t by temperatures below t h i s change hydrolysis level of 10°C m a i n t a i n an 6). d a t a were a v a i l a b l e thermally With to i n d u c e d Km changes the a n i m a l . f o r t h e r m a l accommodation o f a t t h e minimum Km. affinity falls and At rapidly the thermal the r e a c t i o n rate at low concentrations i s maintained at a r e l a t i v e l y constant to temperatures beyond i s the limiting the organism, n o t an over and decrease. ( a b o u t 2 5°C) o f t h e a n i m a l . system trout (Table the r e a c t i o n r a t e I n t h e t r o u t AChE s y s t e m substrate i n Km point w i l l ( T a b l e 4) as b o t h t h e e n z y m e - s u b s t r a t e energy o f the system Km-temperature the temperature point may particular n o r m a l l y e n c o u n t e r e d by minimum t e m p e r a t u r e rate over a F o r the rainbow above the minimum Km i f rate t h a t a t low and probably- c o n c e n t r a t i o n s t h e enzyme r e a c t i o n e e l AChE's, a 2 t o 3 f o l d determine from Fish f o r the o b s e r v a t i o n substrate relatively temperature Evolutionary Accommodation The b a s i s remain of and system the u p p e r Thus, nervous the temperature hydrolysis in setting tolerance i f the c e n t r a l in setting t h e r a t e o f ACh important f a c t o r thermal the upper range b y AChE i s p r o b a b l y thermal limit. 54 Figure 14. E f f e c t of Assay Temperature on the Km o f ACh f o r AChEs from Rainbow Trout, Eel and Trematomus b o r c h g r e v i n k i . E3 2°C a c c l i m a t e d trout © 17°C a c c l i m a t e d trout A electric eel O Trematomus b o r c h g r e v i n k i Electric Temperature (°C) 55 It other i s possible, than r e a c t i o n Km c h a n g e s , thermal however, t h a t rate and t h a t are a f f e c t e d by the t h e r m a l l y these factors fluctuations activity. i n t h i s respect i n substrate saturation plots 2 5 C, t h e t e m p e r a t u r e fluctuations value (0.98 x 1 0 ~ ) c a n g r e a t l y achieve the a f f e c t the rate point, value, Km o f enzyme switch. As 25°C, are required to A s i m i l a r s i t u a t i o n i s observed with Trematomus a n d r a i n b o w t r o u t AChEs Km 15. a b o u t t h i s minimum c h a n g e s i n ACh c o n c e n t r a t i o n t h e same e f f e c t . minimum substrate a t t e m p e r a t u r e s above a n d b e l o w Thus, a s t h e Km o f t h e enzyme the i n the e s s e n t i a l l y as an a l l - o r - n o t h i n g increases much g r e a t e r i n d u c e d Km c h a n g e s u p o n t h i s i n AChE c o n c e n t r a t i o n 4 Km v a l u e small enzyme e e l AChE shown i n F i g u r e small acting of a t w h i c h t h e Km r e a c h e s a minimum 0 activity, One m e c h a n i s m to regulate i s demonstrated for electric induced i n setting i s the a b i l i t y concentration The e f f e c t o f t h e r m a l l y f o r m o f enzyme r e g u l a t i o n the are involved l i m i t s f o r t h e enzyme s y s t e m i n v i v o . w h i c h may be i m p o r t a n t At enzyme c h a r a c t e r i s t i c s increases (Figures 16 a n d 1 7 ) . a t temperatures above t h e a d v a n t a g e s t o be o b t a i n e d f r o m rate s t a b i l i z a t i o n may be o f f s e t b y l o s s o f c o n t r o l o v e r t h e reaction. Km i s accompanied by a decrease control in A t t e m p e r a t u r e s b e l o w t h e minimum over the r e a c t i o n . t h e AChE s y s t e m , investigators tolerance i n both r e a c t i o n t h e n b o t h enzyme r e g u l a t i o n enzyme s y s t e m j_n v i v o . have a t t e m p t e d or organisms w i t h point, rate i f t h i s form o f c o n t r o l a c c o m m o d a t i o n may be i m p o r t a n t the Km increasing and i s important and r a t e i n s e t t i n g thermal limits for As d i s c u s s e d previously, to c o r r e l a t e the upper the t h e r m o s t a b i l i t i e s many thermal o f enzymes 56 F i g u r e 15. ACh S a t u r a t i o n Curves o f E l e c t r i c E e l ACh a t 15° 40°C ( A ) . (<§), 25° ( B ) , and Relative Activity 57 F i g u r e 16. ACh S a t u r a t i o n Curves of Trematomus b o r c h g r e v i n k i AChE a t 2° ( H ) and 10°C ( ® ). 100 ACh] (mM) 58 Figure 17. ACh S a t u r a t i o n Curves of Rainbow T r o u t 2° ( © ), 12° AChE a t 0° ( A ) and 2°C acclimated ( EH ) , 18°C ( O ). 80 59 from p o s s i b l y limiting physiological relationships o b s e r v e d w i t h t h e f i s h AChE's p r o v i d e an a l t e r n a t e mechanism b y w h i c h inactivated i n vivo b. Acclimation Thermal (i) Adjustment systems. enzymes may i n the absence be The thermally of protein denaturation. o f the t h e r m a l accommodation range I n t h e t r o u t b r a i n AChE s y s t e m a d j u s t m e n t accommodation range by regulating in response proposed a following the r e l a t i v e a second (2° a n d The 17°C) where t h e r e l a t i v e two and i s produced i s better suited has The and Hochachka, 1968), Somero, isocitrate lactate c o m m u n e i a t i o n ) and c i t r a t e to longer thermally catalytic f o r which the for control p r o d u c t i o n o f enzyme a l s o been o b s e r v e d w i t h t r o u t 1970). is altered of together a t i n t e r m e d i a t e temperatures c u r v e f o l l o w i n g changes 1968), It is amounts o f e a c h enzyme v a r i e s w i t h temperature. types enzymes o c c u r s i n g l y a t t h e r m a l w i t h a l t e r e d and a p p a r e n t l y a d a p t i v e changes temperature enzyme o r where r e g u l a t i o n o f form relationship functions. acclimation rate, thermal i s achieved p r o p o r t i o n s o f t h e two f o r m o f t h e enzyme c a n no i s lost, Km-temperature extremes thermal a c c l i m a t i o n t h a t when t h e e n v i r o n m e n t a l t e m p e r a t u r e accommodate f o r r e a c t i o n these o f the to changing environmental temperature. r a n g e where one activity Km-temperature Km- i n environmental dehydrogenases dehydrogenases synthases variants i n the pyruvate kinases the temperature (Somero (Hochachka and (Moon, p e r s o n a l (Hochachka and Lewis, 60 (ii) Rate c o m p e n s a t i o n o f AChE An i n t e r e s t i n g feature enzymes i s t h a t activity o f t h e two r a i n b o w t r o u t AChE t h e minimum Km v a l u e s a r e s i m i l a r a l t h o u g h occur a t widely d i f f e r e n t temperatures. presumably p h y s i o l o g i c a l substrate catalysed rate Thus, than the r e a c t i o n catalysed a t low a n d concentrations b y t h e ' c o l d ' enzyme a t 2 ° C w i l l they the r e a c t i o n proceed a t a slower b y a n e q u a l amount o f t h e 'warm' enzyme a t 1 7 ° C i f t h e two enzymes h a v e s i m i l a r turnover numbers. T h e r e a r e a number o f f a c t o r s w h i c h may a c t t o r a i s e t h e rate o f ACh h y d r o l y s i s i n the c o l d a c c l i m a t e d + e t a l (19 64) in o b s e r v e d changes i n b r a i n o r a i n b o w t r o u t t r a n s f e r r e d f r o m 16 effects (Table ionic 7) shows t h a t a t h i g h strength leads been r e p o r t e d marmorata the is + Na , K o and CI t o 6 C. ACh c o n c e n t r a t i o n s t o a marked i n c r e a s e rate 1966). o f the r e a c t i o n increased. Thus, the rate increasing A similar relationship organ o f Torpedo However, a t l o w e r ACh generally thermal a c c l i m a t i o n An increase decreases as i o n i c o f ACh h y d r o l y s i s i n intracellular temperature been observed i n several 1969). concentrations strength i n v i v o may be occur during process. environmental Wilson, t o 2°C i n b o t h Km a n d f o r AChE f r o m t h e e l e c t r i c (Changeux, levels A study o f the modulated by changes i n the i o n i c environment t h a t the Hickman o f s a l t s on b r a i n AChE f r o m t r o u t a c c l i m a t e d maximum v e l o c i t y o f ACh h y d r o l y s i s . has state. and b l o o d pH o n l o w e r i n g ( a b o u t 0.014 pH u n i t s poikolotherms (Rahn, p e r °C) has 1965; Reeves a n d W i t h t h e 2 ° C t r o u t AChE, a f a l l i n temperature 61 Table 7. Effect o f S a l t s on t h e Km a n d Rate o f o f ACh b y AChE f r o m 2 ° C A c c l i m a t e d Rainbow T r o u t relative Salt 10" M NaCl 3 5 x Km x 10" Hydrolysis activity 3 4 ACh (M) 2.5 x 10" 4 5 x 10" 4 saturating 3.3 0.36 0.58 0.96 4.1 0.35 0.58 1.06 10" M 3 NaCl 10~ M NaCl 7.7 0.31 0.61 1.50 10" M KC1 4.9 0.35 0.61 1.20 4.4 0.45 0.70 1.33 MgCl^ 7.0 0.32 0.62 1.42 Control 2.7 0.44 0.63 1.00 2 2 2 x 10~ M MgCl 5 x 10~ M 3 2 3 S t a n d a r d a s s a y i n 10"" 2°C. 2 a. M tris-HCl buffer, A c t i v i t i e s are expressed r e l a t i v e control a t s a t u r a t i n g ACh levels pH 7.2 (control) at t o the a c t i v i t y o f the 62 f r o m 17° ACh t o 2°C hydrolysis (Figure 4) and t h r o u g h an Nigrelli total cold acclimation state, as trout acclimated or of the p r o p o s e d by Baslow compensation of brain 17°C f o r 35 days killifish. (Table 8) failed to the i t can be argued that same r a t e o f ACh hydrolysis not in b e c a u s e o f a l t e r e d ACh of neural membranes w h i c h may A l t h o u g h no levels in fish, significant i t may information a number o f changes be the concentrations, affect is available on investigators i n membrane s t r u c t u r e following acclimation. unsaturation acclimation 1968) phopholipids, of the Roots total temperature this same percent membranes of (1964) f o u n d a t r e n d i n the gold t r e n d was choline These two the towards brain f a t t y acids with particularly glycerophosphotides. 60 specific cold acclimated.states J o h n s t o n and over enzyme a c t i v i t y o f AChE : f r o m c h o l i n e r g i c mechanisms. (Roots, amount o f might the changes i n p r o p e r t i e s thermal compensation acclimated hand, to m a i n t a i n have r e p o r t e d activity difference. other a l t e r e d b r a i n ACh of i n thermally t o 2 ° and significant warm and that rate i n the activity and rate substrate. increase However, e s t i m a t i o n s On possible (1964) t o a c c o u n t f o r r a t e cholinesterase necessary i n the r e l a t i o n s h i p b e t w e e n pH considered i n the show any increase holds at p h y s i o l o g i c a l l e v e l s of achieved present r e s u l t i n an i f the I t was be could total and and decreasing in a later established f o r the study brain ethanolamine phospholipid lipid (Cotman e t a l , 1 9 6 9 ) . fish, increased types account i n rat brain synaptic It i s generally agreed for plasma that 63 Table 8. Specific Activities Acclimated o f B r a i n AChE f r o m Rainbow T r o u t t o 2 ° a n d 17°C f o r 35 days Specific Acclimation t e m p e r a t u r e ( C) Number o f f i s h assayed A s s a y activity temperature 18 3 (°C) 10 2 2 12 10.1 ± 0.1 8.6 ± 0.3 6.2 ± 0.3 17 11 10.1 ± 0.3 8.4 ± 0.1 6.2 ± 0.1 Whole b r a i n homogenates (100 mg b r a i n / m l ) were a s s a y e d i n 10~ pH 7.2, w i t h 2 x 1 0 ~ 2 M tris-HCl buffer, 3 M ACh a s substrate. a. Specific p e r mg the activities a r e e x p r e s s e d asyu-M ACh h y d r o l y z e d p r o t e i n per hour. mean. ± v a l u e s i n d i c a t e the range about the lipid role c o n s t i t u e n t s o f b i o l o g i c a l membranes p l a y a i n r e g u l a t i o n of for t h i s has and Harland permeability, b e e n somewhat i n d i r e c t . (1969) have phospholipid Cl~ ionic content Tobias o f f r o g s k i n s and e_t a l , 1962), and Thus, there species f r o m the (Vanatta, i s considerable 1969; support t h a t c h a n g e s i n the lipid during t h e r m a l a c c l i m a t i o n may membranes b i n d i n g of f o r the necessary be induced compensated maintenance a t (Fast, to f o r the composition f o r by the the lipid species a l t e r e d temperature stabilization of the similar t o t h a t f o l l o w e d by present. 1967; various 1968). by Roots membranes nerve i n t i s s u e s from reflect t h a t can not Continued g e n e r a l l y leads i o n i c balance and + maintenance underlying c h a n g e s i n membrane p e r m e a b i l i t y gradual et ionic Na similar suggestion e x p o s e d t o r a p i d c h a n g e s i n t e m p e r a t u r e may thermally the Papahadjopoulos, o f membrane p e r m e a b i l i t y c h a r a c t e r i s t i c s fish the component o f n e u r a l be A l t e r a t i o n i n the ions evidence Watlington properties of artificial (19 68) conduction. example, o t h e r workers have r e a c h e d from s t u d i e s w i t h phospholipid For most found a c o r r e l a t i o n between t r a n s p o r t systems w h i l e conclusions although critical over a time changes i n t i s s u e l i p i d s to a course (Hickman a l . 1964) . It free should be stressed that phospholipids i n n e u r a l membranes, b u t possibly i n c o r p o r a t i n g AChE. when c o n s i d e r i n g t h e AChE, as i t has enzyme a c t i v i t y effects been found can be r a t h e r as T h i s may of do lipoprotein be o f some not occur complexes importance t h e r m a l a c c l i m a t i o n upon i n other a l t e r e d by membrane s y s t e m s removal of the that phospholipid component. For example, phospholipds are respiratory activity i n mitochondria, and requirement f o r such f o r m an enzymes as absolute .cytochrome o x i d a s e f_-hydroxy-butyric cytidine diphosphocholine 1965), and transferase Thus t h e lipids following possibility of b r a i n attributed One W i t h the to the point f r o m warm and lipid that should need f o r r a t e the r e l a t i o n s h i p b e t w e e n in concentrations. rate activity not concentration It state w i t h any Strickland, comparisons butanol-acetone fish that could overlooked i n failed be present excess i n i n enzyme possible activity to less e f f i c i e n t s u c h d i s c r e t e s y s t e m s as little maintain levels with a large enzyme. t o d e t e r m i n e enzyme and degree of a c c u r a c y . the temperature might have still is substrate i n great above c r i t i c a l of c a t a l y t i c a l l y considering thermal a c c l i m a t i o n then a r e d u c t i o n hydrolysis within free v i v o enzyme and I f AChE was is difficult concentrations be compensation d u r i n g e f f e c t i f i t was o f ACh lipid cold acclimated f o l l o w i n g a drop i n environmental the (Tanaka and component. the physiological and Schneider, r a i n b o w t r o u t AChEs, changes i n s p e c i f i c warm a c c l i m a t e d 1965) , e x i s t s t h a t c h a n g e s i n membrane made b e t w e e n c r u d e homogenates and t o show any MacLennan, t h e r m a l a c c l i m a t i o n m i g h t h a v e some e f f e c t upon AChE a c t i v i t y . extracts and ( F i s c u s and ATPase 1962) mitochondrial (Sekuzu e t a l , 1963) f o r membrane bound Na-K 1965). ( F l e i s c h e r e t a_l, (Tzagoloff dehydrogenase essential for substrate mitochondria W i t h b r a i n AChE t h e s e d i f f i c u l t i e s are compounded b y lack of precise knowledge as the enzyme i n the c e n t r a l nervous system. to the action I f i t i s assumed of 66 that c h o l i n e r g i c mechanisms i n t h e neuromuscular can j u n c t i o n are level c e n t r a l nervous system and e s s e n t i a l l y s i m i l a r , some e s t i m a t e be made o f the a t w h i c h ACh tained f o r the transmission of nerve (1969) h a v e c a l c u l a t e d t h a t the i n t e r c o s t a l muscle c o n t a i n s 10 h y d r o l y s i s must be impulses. postsynaptic main- Namba and Grob membrane f r o m rat g m o l e c u l e s o f AChE, and that one _g synapse h y d r o l y s e s 5 x 10 7 They e s t i m a t e 10 synaptic that space per which could be m o l e c u l e s o f ACh m o l e c u l e s o f ACh are hydrolysed within synaptic membrane were known, i t w o u l d be ACh within latency period time of arrival synaptic ACh of synaptic is generally the longer, i n the at C a l c u l a t i o n s b a s e d upon t h e synaptic was in t h a t ACh the from t h i s synaptic s e c o n d s as hydrolysis, e x c e s s o f AChE. but the rate space one that Clearly this i t does i n d i c a t e t h a t the of 10 post molecules that the the time o f 0.3 the the t o make some 7 post- t o 0.5 milli- action is 50 m i l l i s e c o n d s for the synapse. f r e e d i f f u s i o n of ACh become n e g l i g i b l e a t t h e millisecond of release, and posti t some b a r r i e r t o f r e e d i f f u s i o n e x i s t s f o r the a r r i v e s a t an to Renshaw c e l l of to cross measured from transmitter of the (1957) s t a t e s order ( E c c l e s , 1957). extreme v a l u e s one of l e v e l s should membrane w i t h i n concluded impulse order by to hydrolyse as the substrate action at possible Eccles in'the duration mediated transmission indicated transmitter transmission of a presynaptic However, considerably of time a v a i l a b l e . response seconds. duration amount o f AChE r e q u i r e d the into t i m e t a k e n f o r ACh space, of the I f the of milliseconds synaptic the and 0.02 millisecond. released action potential, a quantity e s t i m a t e d a v a i l a b l e AChE. estimate of per U s i n g 0.5 to 50 time a v a i l a b l e f o r e s t i m a t e d 2 5 t o 2 500 milliACh fold i s a rough c a l c u l a t i o n a t postsynaptic AChE may never functional best, 67 be saturated with concentrations conclusions (Srere, serve a t o r b e l o w the V e g o t s k y and to u n d e r l i n e i n the There evidence system. the Frieden, importance example, Glow and at this 1963). If there central nervous stabilizing level A Similar data in vivo. w h i c h c o u l d be c e n t r a l nervous (1966) have shown i n do not increase b e e n r e d u c e d b e l o w 40 o f AChE i n h i b i t i o n advantages and stabilization of too compelling t o be data accommodation o f a t hand, reaction rate warm a c c l i m a t i o n s t a t e s i t may same r a t e s o f ACh In conduction (Wilson and as be point trout in values, thermally f o r the probably induced Km changes t r o u t AChEs, seem simply c o i n c i d e n t a l . i t i s proposed that while i s necessary n o t be situation, Cohen, i n the r e l a t i o n s h i p s i n both necessary hydrolysis at different this may inherent reaction rates dismissed to temperature f l u c t u a t i o n s . minimum Km concentrations, value interpreted i s a f u n c t i o n a l e x c e s s o f AChE i n t h e adaptive systems estimates s h a r p d r o p i n neve p h y s i o l o g i c a l ACh temperatures. enzyme These s y s t e m t h e r e w o u l d seem l i t t l e From the ACh enzyme-substrate levels reaction rates during the minimum Km of AChE a c t i v i t y has between h a b i t a t temperature, the enzyme. 1958). Rose r a t b r a i n t h a t ACh of normal v a l u e s . a l s o occurs However, o f the o f a f u n c t i o n a l e x c e s s o f AChE i n the of percent Km i s exposed to r e g u l a t i o n o f enzyme a c t i v i t i e s significantly until 50 rather, i s some e x p e r i m e n t a l For bioassays but have been a r r i v e d a t f o r m i t o c h o n d r i a l 1968; affinities as substrate to i n vivo cold maintain acclimation selection for a d e t e r m i n e d by the thermal particular substrate and 68 concentrations, physiological substrate c. f o r i t i s o n l y when Km substrate concentration levels can The the adaptation inhabiting different that small effectively Evolutionary adaptation (i) Adjustment of to a t or regulate t h e r m a l accommodation enzyme s u g g e s t e d f o r the Km values may thermal environments appears by the species based will the species. s e l e c t i o n of a determined p r i m a r i l y by in t o be r e l a t i o n s h i p that experienced t r o u t enzymes, be activity. range o f AChE f u n c t i o n t o t e m p e r a t u r e range n o r m a l l y below fluctuations in t h e r m a l accommodation f o r r e a c t i o n r a t e o v e r temperature of are temperature upon s e l e c t i o n f o r a Km-temperature allow values As particular range p h y s i o l o g i c a l ACh concentration. If thermally shifts the induced i n the readily conformational Km-temperature f r o m the gradual electric diverged data similarities between the are during an this hypothesis the similar enzyme m o l e c u l e , s p e c i a t i o n can be conformation advantage a t this p o i n t to t h e v i e w t h a t the present trout i n f a c t h o m o l o g o u s enzymes w h i c h h a v e best I n the t h a t can be AChEs w h i c h a r e o f a common o r i g i n . e e l AChEs h a v e m o l e c u l a r probably upon o f amino a c i d r e p l a c e - f r o m a common a n c e s t r a l gene. however, electric curve to support e e l AChEs a r e information, with c h a n g e s i n the accumulation C l e a r l y i t w o u l d be amino a c i d s e q u e n c e and r e l a t i o n s h i p i s dependent i n t e r p r e t e d i n terms o f c h a n g e s i n resulting ments. Km-temperature i n net absence of done i s t o at Both list compatible trout and w e i g h t s o f a b o u t 260,000, and c h a r g e and 1. least such the c o n f i g u r a t i o n as judged from e l e c t r o p h o r e s i s conclusive, b o t h the 2. The t h i s data trout and Arrhenius and plots temperatures. are the the Evolution low While account the be the two that the two enzymes w o u l d be duplication, the eel properties of followed 1963; has trout salmonids a t A and B higher enzyme that hydrolysis a single CNS. One 1968; presence explanation gene d u p l i c a t i o n , relationships 1964; Watts, Cohen and 1968; duplicated that the to Gene fates (Smithies et a l , Watts, 1969). l o c i are known; (Holmes and Markert, 1969; ( C o r y and 1962; 1967; genetic 1968), e n o l a s e of o r i g i n a l divergence Milstein, W a t t s and is and for independent e v o l u t i o n a r y i n the of replacements. by l e a s t four Markert, the t h e i r thermal ranges. the will enzyme, extend l a c t a t e dehydrogenases M a s s a r o and same f o r m , properties t h r o u g h amino a c i d been i m p l i c a t e d Rutter, Augustinsson, curved AChEs. o f many s t r u c t u r a l l y h o m o l o g o u s p r o t e i n s Ingram, structures. b a s e d upon a d v a n t a g e s a c c r u i n g could duplicates, The proposed to e x p l a i n d i f f e r e n t Km-temperature i n d i v i d u a l s who that inhibitor mechanisms o f t r o u t enzymes a r o s e b y of proposition activation at t r o u t and i n the they subsequently diverged Selection means r a i n b o w t r o u t b r a i n AChE complex i n the AChE v a r i a n t s two no a c c u m u l a t i o n o f amino a c i d s u b s t i t u t i o n s f o r changes the and argued from these f u r t h e r mechanisms must be the the relationships. e n e r g i e s of s i t e s and of with W h i l e by enzymes h a v e e s s e n t i a l l y the p r o b a b l y s i m i l a r i n the (ii) gels. s i m i l a r substrate I t can active is consistent pH-activity for approaching very acrylamide e e l enzymes h a v e s i m i l a r s u b u n i t AChEs d i s p l a y specificities both on Wold, 1966), In and supernatant malate dehydrogenase ( B a i l e y e t a l , 1969), and r e c e n t l y m u l t i p l e forms o f s e v e r a l enzymes i n a d d i t i o n have been found Somero a n d i n the Hochachka, 1970). In f a c t , entire genome has about rainbow t r o u t 1968; i t appears Somero, likely 1969; H o c h a c h k a and fish per n u c l e u s and as i n the Atkin, Hinegardner, is same o r d e r c o n s i d e r a b l e s u p p o r t f o r the view t h a t arose following An may of Ohno e t a l , 1968; the alternative hypothesis gene d u p l i c a t i o n , i s that following two type have l e d t o the t h e one presence individual. genotype populations at a o f the two have a r i s e n species There hybridization possessed that from both Bouck a n d Ball lead later time regimes. might to favour salmonids may diploid f o r a number o f enzymes. the view incorporation that speckled 27 this Markert p a r e n t s w i t h i n the h y b r i d . at least of i n the p o p u l a t i o n , to support t o the (1968) f o u n d F, h y b r i d s p o s s e s s e d AChEs absence thermal Massaro and different alleles among t r o u t c a n there t r o u t AChEs the t e t r a p l o i d i s experimental evidence enzyme v a r i a n t s trout trout from h y b r i d s formed between a n c e s t r a l that example, suggested as and Thus i n the I f c o n d i t i o n s were s u c h a s i t m i g h t have b e e n e s t a b l i s h e d in fact twice d i v e r g e n t enzymes w i t h i n e v e n t u a l l y becoming the dominant form. (1968) have possess the r e p r o d u c t i v e i s o l a t i o n p o p u l a t i o n s t h a t were e x p o s e d t o d i f f e r e n t I n t e r b r e e d i n g b e t w e e n the Lewis, gene. the a single molecular two 1968; the (Ohno 1969). d u p l i c a t i o n o f an a n c e s t r a l have d i v e r g e d from two salmonids approximately many chromosomes as o t h e r f i s h 1966; Somero, t h a t d u p l i c a t i o n of o c c u r r e d i n these t w i c e as much DNA (Hochachka and t o AChE that of For trout-brown electrophoretically 71 distinct l a c t a t e dehydrogenases, w h i l s t o n l y detected i n each o f the p a r e n t a l described lake a s i m i l a r s i t u a t i o n with trout hybrid, dehydrogenase generations An is being (Ihssen, a n d was a b l e profile lake personal species, and s p l a k e AChE s y s t e m The t o show t h a t i n trout t r o u t and hybrids lake The h y b r i d , l y i n g b e t w e e n t h e two between d i f f e r e n t trout bybrids. generations of I t was c o n s i d e r e d of p a r t i c u l a r t o the e v o l u t i o n o f the rainbow f o r acrylamide gel disc o f b r a i n homogenates f r o m groups o f t r o u t and s p l a k e After acclimation P hybrids Following t r o u t each give acclimated trout fish. speckled to 4 ° , 9° 1 8 , a n d c a n be s u m m a r i s e d as to 4 ° c speckled and l a k e t r o u t each h a s one m a j o r AChE b a n d a n d acclimation t o 9°C, s p e c k l e d two AChE b a n d s , w h i l e b a n d s a n d two m i n o r b a n d s . been speckled, t o s t u d y t h e i n h e r i t a n c e o f AChEs i n t h e s e two m i n o r b a n d s . and subsequent and a range o f t h e r m a l t o l e r a n c e s have r e s u l t s obtained lake Speckled rolerance show one AChE b a n d , w h e r e a s s p l a k e trout through tolerance upper thermal t o l e r a n c e s . 2 0 ° C a r e shown i n F i g u r e lake trout- the l a c t a t e was m a i n t a i n e d communication). repsect electrophoresis follows: the speckled conducted by Ihssen a t the U n i v e r s i t y o f Toronto i n t e r e s t with and splake, i n v e s t i g a t i o n o f temperature i n crosses trout, Goldberg has 1966; G o l d b e r g e t a l , 1 9 6 7 ) . has a temperature parental found i n splake (Goldberg, t r o u t have d i f f e r e n t splake, stocks. 15 c o u l d be splake h a s two m a j o r A f t e r 14 days a t 2 0 ° C , show a s i n g l e AChE band, w h i l e one m i n o r b a n d o f AChE a c t i v i t y . splake and speckled h a s one m a j o r b a n d Unfortunately, 20°C lake 72 Figure 18. Resolution Trout, o f B r a i n AChEs f r o m Lake T r o u t Gel Disc and Splake by A c r y l a m i d e Electrophoresis. b a n d s were Specific AChE i d e n t i f i e d by i n h i b i t i o n with 284C51 a n d e s e r i n e . only Speckled The d i a g r a m shows t h e number o f b a n d s r e s o l v e d a n d does n o t i n d i c a t e t h e r e l a t i v e migration r a t e s o f the f r a c t i o n s , a p r o p e r t y can which o n l y be a c c u r a t e l y d e t e r m i n e d b y running mixtures within electrophoretic technique conditions are given Acclimation 4°C fish and 20°C f i s h t h e one g e l . The and s t a i n i n g i n t h e methods s e c t i o n . periods f o r 6 weeks, were a s f o l l o w s : 9°C f i s h f o r 2 weeks. f o r 6 weeks, 4 C acclimated trout speckled lake splake speckled lake splake 9°C acclimated trout 20°C acclimated trout speckled splake 73 trout brains were n o t obtained. were a v a i l a b l e i t was mobilities of the homogenates, o r it i s not present types, the the formation which are t o an hybrid. a simple i n the Further, the number o f the number o f AChE summation o f the that interbreeding types or between t r o u t isolated from species i n nature can presence of s i m i l a r t h e r m a l l y inducible suggest that the original i n c o r p o r a t i o n of m u l t i p l e AChE species occurred prior divergence of these three (iii) While may underly species, the switching rates during the evolutionary composition of thermal one to types mechanism must be during i t i s not the t r o u t b r a i n AChE acclimation gene d u p l i c a t i o n and presence of m u l t i p l e development o f enzyme p r o f i l e present of s u c h e v e n t s as the leads trout. Regulation complex to the trout the i n rainbow, one lake in lead AChE s y s t e m s into and polypeptide i t i s apparent number o f AChE enzymes p r e s e n t speckled Thus, parental mechanism, However, brain enzymes. of h y b r i d molecules containing AChE. fish the e l e c t r o p h o r e t i c running mixtures of i n the normally reproductively increase t o compare thermal switching from each p a r e n t a l r e s u l t s obtained a small characterize increase involves breakdown o f chains only d i f f e r e n t AChEs b y known i f t h i s the possible to k i n e t i c a l l y i n splake possibly not As forms o f AChE w i t h i n some f o r m o f postulated thermally to explain thermal a c c l i m a t i o n of p o s s i b l y even m o d i f i c a t i o n enzyme d e g r e d a t i o n , of the gene p r o d u c t s one controlled changes trout. known i f t h e s e c h a n g e s r e s u l t o f enzyme s y n t h e s i s , hybridization from in At altered or both, or following 74 synthesis, t h u s any d i s c u s s i o n of AChE complex must be value, to at this speculative. point- synthesis Berlin, e f f e c t s of Jankawsky, 1969; limiting for future have been s t u d i e d (Mews, 19 57; to of proteins during specific Das and and have been i d e n t i f i e d relating the trout rates investigation. protein poikilotherms Prosser, probable 1967; Dean thermally (Haschemeyer, of of c o n t r o l mechanisms i f o n l y t e m p e r a t u r e upon t o t a l 1969) information the i t w o u l d seem i n a v a r i e t y of 1960; Haschemeyer, steps E v e n so, to o u t l i n e p o s s i b l e i n d i c a t e important areas A l t h o u g h the r e g u l a t i o n of synthesis rate 1969), and thermal a c c l i m a t i o n and degradation is completely lacking. If the acclimation of temperatures protein synthesis, properties the amounts o f e a c h AChE enzyme p r e s e n t of enzyme s y n t h e s i s a l s o be to the a t the trout. These structure and possibilities postulate operator level of through the t r o u t system, genes may f r o m the i n the livers have thereby thermally Regulation at production. With communication) profiles o f warm and of reflect function thermal a c c l i m a t i o n . include the amino a c y l t r a n s f e r a s e s changes i n modulation of a rate rainbow ribosomal Other s u c h enzymes as w h i c h a p p e a r t o be has ribosomal cold acclimated d i f f e r e n c e s may during accompanied i n d u c e d changes (person melting the regulating transcription. Somero regulation t h a t changes i n s u b s e q u e n t t o m e s s e n g e r RNA found c l e a r d i f f e r e n c e s preparations can d e t e r m i n e d by s t r u c t u r a l genes, achieved numerous s t e p s reference one r e g u l a t o r and divergence of could i n t r o u t are at particular the limiting step 75 in protein fish synthesis following t o lower temperatures Alternately, preformed p r o t e i n t h e t r a n s f e r o f warm (Haschemeyer, 1969). the a c t i v a t i o n and i n a c t i v a t i o n o f through m o d i f i c a t i o n a d d i t i o n a n d r e m o v a l o f amino a c i d s , composition could acclimated o f amino a c i d s i d e o r changes i n s u b u n i t be i m p o r t a n t methods o f r e g u l a t i o n . Thermal s w i t c h i n g o f t h e 'warm' a n d ' c o l d ' AChEs i n enzyme m e d i a t e d mechanisms m i g h t be a c h i e v e d d i r e c t l y Km-temperature r e l a t i o n s h i p s s i m i l a r t o those i n hormone b a l a n c e . The i n f l u e n c e and a c t i v i t y 1964; induced changes o f hormones i n c o n t r o l l i n g o f enzymes i s w e l l ( M e t z e n b e r g e_t a l , 1961; McKearns, through observed with the AChEs, o r i n d i r e c t l y b y s u c h f a c t o r s a s t h e r m a l l y both synthesis groups, established 1963; V a r n e r a n d Ramchandra, Kim e t a l , 1966; O k i e t a l , 1966; Tomkins e t a l , 1 9 6 9 ) . It complexes i s hoped t h a t i n poikilotherms system f o r s t u d i e s vertebrates. these will thermally controled provide a valuable o f the r e g u l a t i o n enzyme experimental o f gene e x p r e s s i o n in 76 SUMMARY The system effects of temperature t h e r m a l a c c l i m a t i o n and a d a p t a t i o n to temperature At o f ACh level nervous interpreting evolutionary o f enzyme function. concentrations, the rate h y d r o l y s i s b y AChE c a n r e m a i n r e l a t i v e l y u n a f f e c t e d throughout a temperature t h a t e x p e r i e n c e d by P l o t s o f Km rainbow versus temperature r difference temperature that from curves with close sucrose gradient spectra probably r e s u l t enzyme c o n f o r m a t i o n , and f o r AChE enzymes temperatures Studies u t i l i z i n g ultraviolet range c o r r e s p o n d i n g e e l y i e l d U shaped values occurrihg at temperatures. by the a n i m a l i n n a t u r e . t r o u t and e l e c t r i c minimum Km with a t the p r o b a b l e p h y s i o l o g i c a l ACh assay temperature and the o f f i s h were i n v e s t i g a t e d w i t h the o b j e c t o f t h e r m a l accommodation, to upon AChE f r o m t o the habitat centrifugation s u g g e s t t h a t changes i n from s m a l l a l t e r a t i o n s sharp breaks i n the Km in Km-temperature curve are not a s s o c i a t e d w i t h changes i n m o l e c u l a r a g g r e g a t i o n or the d i s s o c i a t i o n o f Energies subunits. of a c t i v a t i o n f o r the t r o u t and e l e c t r i c e e l enzymes d e c r e a s e w i t h i n c r e a s i n g relationship with habitat It substrate the o b s e r v e d t h e r m a l range clear accommodation plots temperature. o f l o g Vdptversus and e e l AChEs c o n t i n u e t o i n c r e a s e temperature show no i s a c h i e v e d t h r o u g h c h a n g e s i n enzyme a f f i n i t y with Arrhenius trout rate and temperature. i s concluded that o f AChE r e a c t i o n temperature e x p e r i e n c e d by 1/T f o r the throughout rainbow the the a n i m a l s , i n d i c a t i n g that 77 thermal limits denaturation i s probably not a f a c t o r f o r t h e r m a l accommodation. reached It f o r AChE f r o m i s proposed important that the A n t a r c t i c i n s e t t i n g both stabilization Thermal trout, and and upper the r e l a t i v e displaying different second is no better lower suited substrate associated with enzyme a c t i v i t y . of these of the rainbow variants When t h e where one activity form for reaction i s lost, a relationship functions. trout, b o t h AChE Thus a t p r o b a b l e c a t a l y s e d by proceed a t a slower rate 'warm' enzyme a t 17°C, variants physiological the than the 'cold' reaction unless other factors the c o l d a c c l i m a t i o n p r o c e s s a c t to i n c r e a s e With this pH a n d membrane considered. I t was and AChE by v a l u e s a l t h o u g h t h e s e minima o c c u r a t environment, environmnet i s achieved relationships. c o n c e n t r a t i o n s the r e a c t i o n the rainbow f o r w h i c h t h e Km-temperature temperatures. enzyme a t 2°C w i l l i n the t o a range between regulation. lake trout, is altered for control different c a t a l y s e d by interaction p r o p o r t i o n s o f two be f o r thermal l o n g e r t h e r m a l l y accommodate h a v e s i m i l a r minimum Km markedly limits through an Km-temperature i s produced In t h e c a s e lipids r e l a t i o n s h i p may o r where r e g u l a t i o n o f c a t a l y t i c form c o n c l u s i o n was t h e m a i n t e n a n c e o f enzyme temperature the enzyme c a n rate, and upper Trematomus b o r c h g r e v i n k i . a c c l i m a t i o n o f AChE a c t i v i t y regulating of fish p r o b a b l y i n s p e c k l e d and environmental similar t h e Km-temperature a c c o m m o d a t i o n o f AChE a c t i v i t y rate A in setting found pH may be i n mind, lipids the e f f e c t s of importance, no ionic upon AChE a c t i v i t y t h a t w h i l e changes i n t h e enzyme e x t r a c t h a d of i n both were ionic the presence significant effect o f membrane upon AChE a c t i v i t y AChE f r o m c o l d that the rate Determinations (2°C) a n d warm compensation total of specific I t i s concluded rate t h e c o l d a n d warm a c c l i m a t i o n n e c e s s a r y t o m a i n t a i n t h e same r a t e s acclimation The i s probably states be b a s e d upon s e l e c t i o n f o r a _Km-temperature t h e Km-temperature in terms o f c h a n g e s curve during speciation i n enzyme c o n f o r m a t i o n a c c u m u l a t i o n o f amino a c i d s u b s t i t u t i o n s . i s p r e s e n t e d which, w h i l e the view t h a t derived Possible rate into considered. While gene d u p l i c a t i o n the t r o u t there i n this involving hybridization This that over the Shifts are interpreted Physical not conclusive, the gradual and k i n e t i c i s consistent e e l AChEs were gene. mechanisms b y w h i c h two AChE enzymes c o u l d incorporated hybrids, relationship following rainbow t r o u t and e l e c t r i c from-, common a n c e s t r a l suggested. t o temperature range n o r m a l l y e n c o u n t e r e d by the s p e c i e s . in with i t may n o t be d i f f e r e n t thermal environments appears t o a l l o w t h e r m a l accommodation o f r e a c t i o n evidence necessary a d a p t a t i o n o f AChE f u n c t i o n species temperature although o f AChE h y d r o l y s i s a t in will that temperatures. evolutionary inhabiting indicated i s not achieved through a l t e r a t i o n s i n amount o f AChE p r e s e n t . different f o r brain (17°C) a c c l i m a t e d t r o u t t h e r m a l accommodation o f r e a c t i o n i n both activity c e n t r a l n e r v o u s s y s t e m were i s considerable process, an a l t e r n a t i v e between f i s h that which are normally r e p r o d u c t i v e l y trout hypothesis also interspecies c r o s s e s between t r o u t i s o l a t e d could also implicating p o p u l a t i o n s was t h e o r y was e x a m i n e d w i t h a n d i t was o b s e r v e d evidence be species r e s u l t i n an 79 increased the number o f AChE enzymes p r e s e n t p r e s e n c e o f s i m i l a r AChE c o m p l e x e s speckled and lake trout indicated that o f m u l t i p l e AChEs i n t o one s p e c i e s the evolutionary It divergence can Further, trout, the o r i g i n a l occurred incorporation prior to trout. study thermal a c c l i m a t i o n and e v o l u t i o n a r y as i n rainbow probably o f these i s concluded from t h i s i n the h y b r i d . that thermal adaptation d i s p l a y e d b y many p h y s i o l o g i c a l s y s t e m s accommodation, t o temperature i n poikilotherms be o b s e r v e d a n d i n t e r p r e t e d a t t h e l e v e l o f enzyme function. 80 ABBREVIATIONS ACh - acetylcholine AChE - acetylcholinesterase ChAc - choline Ea - energy o f a c t i v a t i o n °K - degrees Km - Michaelis &0.D. - change i n o p t i c a l T - absolute tris - tris(hydroxymethyl)aminomethane Vmax - maximum v e l o c i t y Vopt - optimum v e l o c i t y 284C51 - d i m e t h o b r o m i d e o f 1:5 - acetyltransferase absolute constant density temperature aminophenyl)-pentan-3-one di(p-N-allyl-N-methyl- 81LITERATURE CITED A l e x a n d r o v e , V. Y. 1969. Conformational f l e x i b i l i t y of p r o t e i n s and t h e i r r e s i s t a n c e t o p r o t e i n a s e s and temperature c o n d i t i o n s of l i f e . C u r r e n t s i n Modern B i o l o g y 3: 9-19. Allen, R. C , R. A. Popp, a n d D. J . Moore.- 1965. Separation and r e l a t i v e q u a n t i t a t i o n o f mouse p l a s m a e s t e r a s e s w i t h disc electrophoresis. J . H i s t o c h e m . C y t o c h e m . 13: 249-254. A p r i s o n , M. H., R. T a k a h a s h i , and T. L. F o l k e r t h . 1964. B i o c h e m i s t r y o f the a v i a n c e n t r a l n e r v o u s s y s t e m - 1. The 5 - h y d r o x y - t r y p t o p h a n d e c a r b o x y l a s e ^ m o n o a m i n e o x i d a s e and c h o l i n e - a c e t y l a s e - a c e t y l c h o l i n e s t e r a s e s y s t e m s i n s e v e r a l d i s c r e t e a r e a s o f the p i g e o n b r a i n . J . Neurochem. 11: 341-350. A r m e t t , C. J . and J V M . Ritchie. 1960. The a c t i o n o f a c e t y l c h o l i n e on c o n d u c t i o n i n mammalian n o n - m y e l i n a t e d f i b r e s and i t s p r e v e n t i o n b y an a n t i c h o l i n e s t e r a s e . J . P h y s i o l . 152: 141-158. A t k i n s o n , D. E . 1966. Rev. B i o c h e m . 35: Regulation 85-124. o f enzyme a c t i v i t y . Ann. A u g u s t i n s s o n , K-B. 1957. A s s a y methods f o r c h o l i n e s t a s e s , p. 1-63..In "Methods o f B i o c h e m i c a l A n a l y s i s " V o l . 5. (G. G l i c k , e d . ) . Interscience Publ. N.Y. A u g u s t i n s s o n , K-B. 1968. The e v o l u t i o n o f e s t e r a s e s i n v e r t e b r a t e s , p. 299-311. I n "Homologous Enzymes a n d Biochemical Evolution". (N. Van T h o a i and J . Roche, Gordon and B r e a c h , L o n d o n . ed.) A u s t i n , L. and W. K. B e r r y . 1953. Two s e l e c t i v e i n h i b i t o r s o f cholinesterase. B i o c h e m . J . 54: 695-700. B a i l e y , G. S., G. T. C o c k s and A. C. W i l s o n . 1969. Gene d u p l i c a t i o n i n f i s h e s : Malate dehydrogenases of salmon and t r o u t . B i o c h e m . B i o p h y s . Res. Commun. 34: 605-612. Baslow, M. H. 1967. T e m p e r a t u r e a d a p t a t i o n i n the c e n t r a l n e r v o u s s y s t e m o f f i s h , p. 205-22 6. I n " M o l e c u l a r Mechanisms o f Temperature A d a p t a t i o n " . (C. L. P r o s s e r , ed.) Amer. A s s . A d v a n c e . S c i . P u b l . No. 84. Horn-Shafer, Baltimore. B a s l o w , M. H. and R. F. N i g r e l l i . 1964. The e f f e c t o f t h e r m a l a c c l i m a t i o n on b r a i n c h o l i n e s t e r a s e a c t i v i t y o f the k i l l i f i s h , F u n d u l u s h e t e r o c l i t u s . Z o o l o g i c a 149: 41-51. 82 B a t t l e , H. I . 192 6. E f f e c t s o f extreme temperatures on muscle and nerve t i s s u e i n marine f i s h e s . Roy. S o c . Can. T r a n s . S e r . 3. 2 0 : 127-143. B a t t l e , H. I . 1929. A n o t e o n l e t h a l with skate r e f l e x e s . Can. B i o l . 4: 497-500. temperature Fisheries-, i n connection Contrib. B e h r i s c h , H. W. 1969. T e m p e r a t u r e a n d t h e r e g u l a t i o n o f enzyme a c t i v i t y i n p o i k i l o t h e r m s . F r u c t o s e d i p h o s p h a t a s e from m i g r a t i n g salmon. B i o c h e m . J . 115: 687-696. B e h r i s c h , H. W. a n d P. W. H o c h a c h k a . 1969. T e m p e r a t u r e a n d t h e r e g u l a t i o n o f enzyme a c t i v i t y i n p o i k i l o t h e r m s . Properties o f lungfish fructose diphosphatase. Biochem. J . 112: 601-607. B e n n e t t , E . L., M. C. Diamond, D. K r e c h , a n d M. R. R o s e n z w e i g . 1964. Chemical and anatomical p l a s t i c i t y o f b r a i n . S c i e n c e 146: 610-619. B e r n s o h n , J . , K. D. B a r r o n , a n d M. T. H e n d r i e k . 1963. Some p r o p e r t i e s o f isoenzymes o f b r a i n a c e t y l c h o l i n e s t e r a s e . B i o c h e m . P h a r m a c o l . 12: 761-764. Bouck, G. R. a n d R. C. B a l l . 1968. C o m p a r a t i v e e l e c t r o p h o r e t i c p a t t e r n s o f l a c t a t e dehydrogenase i n t h r e e s p e c i e s o f trout. J . F i s h . R e s . B o a r d C a n . 2 5 : 1323-1331. Bowen, W. J . a n d T. D. K e r w i n . 1956. The k i n e t i c s o f m y o k i n a s e . II. Studies o f heat d e n a t u r a t i o n , the e f f e c t s o f s a l t s and t h e s t a t e o f e q u i l i b r i u m . A r c h . Biochem. B i o p h y s . 64: 278-284. B r e c h t , F . C. 1908. Some o b s e r v a t i o n s o n t h e n a t u r e o f h e a t p a r a l y s i s i n nervous t i s s u e . Amer. J . P h y s i o l . 2 2 : 456-476. Brett, J . R. 1956. Some p r i n c i p l e s i n t h e t h e r m a l of f i s h . Q u a r t . Rev. B i o l . 3 1 : 75-87. requirements Brzin, M. 1966. The l o c a l i z a t i o n o f a c e t y l c h o l i n e s t e r a s e i n a x o n a l membranes o f f r o g n e r v e f i b e r s . Nat. Acad. S c i . , P r o c . 56: 1560-1563. Bull, D. L . a n d D. A. L i n d q u i s t . 1968. C h o l i n e s t e r a s e i n b o l l w e e v i l s , Anthonomus g r a n d i s Boheman - 1. D i s t r i b u t i o n a n d some p r o p e r t i e s o f t h e c r u d e enzyme. Comp. B i o c h e m . P h y s i o l . 2 5 : 639-649. B u r g e n , A. S. V. a n d L . M. Chipman. 1951. C h b l i t e r a s e and s u c c i n i c dehydrogenase i n the c e n t r a l nervous system o f t h e d o g . J . P h y s i o l . 114: 296-305. n e s 83 C e l e s i a , G. G. a n d H. H. J a s p e r . 1966. Acetylcholine released from the c e r e b r a l c o r t e x i n r e l a t i o n t o s t a t e o f a c t i v a t i o n . N e u r o l o g y 16: 1053-1063. Chadwick, L . E . 1957. T e m p e r a t u r e dependence o f c h o l i n e s t e r a s e a c t i v i t y , p. 45-59. I n " I n f l u e n c e o f T e m p e r a t u r e on B i o l o g i c a l Systems". ( F . H. J o h n s o n , ed.) W a v e r l y Press, Inc., Baltimore. Changeux, J - P . 1966. Responses T o r p e d o marmorata t o s a l t s P h a r m a c o l . 2: 369-392. o f a c e t y l c h o l i n e s t e r a s e from and c u r a r i z i n g d r u g s . Mol. Changeux, J-P., W. L e u z i n g e r , a n d M. H u c h e t . 1968. Specific b i n d i n g o f a c e t y l c h o l i n e t o a c e t y l c h o l i n e s t e r a s e i n the presence of e s e r i n e . F.E.B.S. ' L e t t e r s 2: 77-80. Changeux, J-P., T. P o d l e s k i , a n d J . C. M e u n i e r . 1969. On some s t r u c t u r a l a n a l o g i e s between a c e t y l c h o l i n e s t e r a s e a n d the m a c r o m o l e c u l a r r e c e p t o r o f a c e t y l c h o l i n e , p. 22 5244. i n "Membrane P r o t e i n s " . New Y o r k H e a r t A s s o c i a t i o n Symposia. L i t t l e , Brown a n d Co.:, B o s t o n . Cheeseman, D. F., W. C. Lee, a n d P. F. Z a g a l s k y . 1967. Carote no p r o t e i n s i n i n v e r t e b r a t e s . B i o l . Rev. 42: 160. 131- Cohen, S., a n d C. M i l s t e i n . 1967. Structure molecules. N a t u r e 214: 449-452. of antibody - Cory, R. P., a n d F. W o l d . 1966. I s o l a t i o n and c h a r a c t e r i z a t i o n o f e n o l a s e f r o m r a i n b o w t r o u t (Salmo g a i r d n e r i i g a i r d n e r i i ) Biochemistry 5: 3131-3137. Cotman, C , M. L. B l a n k , A. M o e h l , a n d F. S n y d e r . 1969. L i p i d c o m p o s i t i o n o f s y n a p t i c p l a s m a membranes i s o l a t e d from r a t b r a i n by z o n a l c e n t r i f u g a t i o n . B i o c h e m i s t r y 8: 4606-4612. Das, A. B. a n d C. L. P r o s s e r . 1967. B i o c h e m i c a l changes i n t i s s u e s o f g o l d f i s h a c c l i m a t e d t o h i g h a n d low tempe r a t u r e s - 1. Protein synthesis. Comp. B i o c h e m . P h y s i o l . 21: 449-467. Davis, B. J . 1964. D i s c e l e c t r o p h o r e s i s - I I . Methods a n d a p p l i c a t i o n t o human serum p r o t e i n s . A n n a l s . . N. Y. A c a d . S c i . 121: 404-427. Dean, J . M., a n d J . D. B e r l i n . 1969. A l t e r a t i o n s i n hepatocyte f u n c t i o n o f t h e r m a l l y a c c l i m a t e d r a i n b o w t r o u t (Salmo g a i r d n e r i i ) . Comp. B i o c h e m . P h y s i o l . 29: 307-312. De R o b e r t i s , E. secretion. 1964. H i s t o p h y s i o l o g y o f synapses and Pergamon P r e s s , London. neuro-. 84 D e t t b a r n , W. D. 1960a. E f f e c t o f c u r a r e on c o n d u c t i o n i n myelinated, i s o l a t e d nerve o f the f r o g . N a t u r e 186: 891-892. D e t t b a r n , W. D. 1960b. New e v i d e n c e f o r t h e r o l e o f acetylcholine i n conduction. Biochim. Biophys. 41: 377-386. Acta Dure11, J . , J . T. G a r l a n d , a n d R. 0. F r i e d e l . 1969. Acetylcholine action: biochemical aspects. S c i e n c e 165: 862-866. E c c l e s , J . C. 1957. The P h y s i o l o g y o f N e r v e C e l l s . Hopkins Press, B a l t i m o r e . E c c l e s , J . C. 1964. The P h y s i o l o g y o f S y n a p s e s . Verlag, B e r l i n . John Springer- E c c l e s , J . C , P. F a t t , a n d K. K o k e t s u . 1954. C h o l i n e r g i c a n d i n h i b i t o r y s y n a p s e s i n a pathway f r o m m o t o r - a x o n c o l l a t e r a l s t o motorneurones. J . P h y s i o l . 126: 524562. E h r e n p r e i s , S. 1967. M o l e c u l a r a s p e c t s o f c h o l i n e r g i c mechanisms, p. 1-78. I n "Drugs A f f e c t i n g t h e P e r i p h e r a l Nervous System". Med. R e s . S e r . Monogr. v o l . 1. M a r c e l D e k k e r , I n c . , N. Y. Fast, P. G. 1967. E t h a n o l a m i n e p h o s p h o g l y c e r i d e s : on t h e p r o p e r t i e s o f m y e l e n o i d l e c i t h i n w a t e r S c i e n c e 155: 1680-1681. effect systems. F e l d b e r g , W. 1945. P r e s e n t v i e w s o n t h e mode o f a c t i o n o f a c e t y l c h o l i n e i n the c e n t r a l nervous system. Physiol. Rev. 2 5 : 596-642. Feldberg, W., a n d M. V o g t . 1948. A c e t y l c h o l i n e s y n t h e s i s i n d i f f e r e n t r e g i o n s o f the c e n t r a l nervous system. J . P h y s i o l . 107: 372-381. F i s c u s , W. G. a n d W. C. S c h n e i d e r . phosphoryl-choline - c y t i d y l P r o c . 24: 4 7 6 . ( A b s t r . ) 1965. A c t i v a t i o n o f transferase. Federation F i s h e r , K. C. 1958. An a p p r o a c h t o t h e o r g a n a n d t h e c e l l u l a r a d a p t a t i o n t o t e m p e r a t u r e i n f i s h a n d s m a l l mammals, p. 3-49. I n " P h y s i o l o g i c a l A d a p t a t i o n " (C. L . P r o s s e r , ed.). Amer. P h y s i o l . S o c . W a s h i n g t o n , D.C. F l e i s c h e r , S., G. B r i e r l e y , H. Klouvasn, a n d D. B. S l a u t t e r b a c k . 1962. Studies o f the e l e c t r o n t r a n s p o r t system. XLVII. The r o l e o f p h o s p h o l i p i d s i n e l e c t r o n t r a n s f e r . J . B i o l . Chem. 237: 3264-3272. 85 Foss, J . G. 1960. T e m p e r a t u r e d i f f e r e n c e B i o p h y s . R e s . Commun. 2: 193-197. Foss, J . G. 1961. H y d r o p h o b i c b o n d i n g a n d c o n f o r m a t i o n a l t r a n s i t i o n s i n lysosyme, r i b o n u c l e a s e and c h y m o t r y p s i n . B i o c h i m . B i o p h y s . A c t a 4 7 : 569-579. Fry, spectra. Biochim. F . E . J . 1947. E f f e c t s o f e n v i r o n m e n t o n a n i m a l Ontario F i s h e r i e s Lab. Publ. 55: 1-62. activity. Glow, P. H. a n d S. R o s e . operant e x t i n c t i o n . 165-172. Glow, P. H., S. Rose, a n d A. R i c h a r d s o n . . 1966. The e f f e c t o f acute and c h r o n i c treatment w i t h d i i s o p r o p y l f l u o r o p h o s p h a t e o n c h o l i n e s t e r a s e a c t i v i t i e s o f some t i s s u e s o f t h e r a t . A u s t . J . E x p . B i o l . Med. S c i . 44: 73-86. G o l d b e r g , E . 1966. hybridization 1091-1093. 1966. C h o l i n e s t e r a s e l e v e l s a n d J . Comp. P h y s i o l . P s y c h o l . 61: L a c t a t e dehydrogenase i n v i v o and i n v i t r o . i n trout: S c i e n c e 151: G o l d b e r g , E., J - P . C u e r r i e r , a n d J . C. Ward. 1967. L a c t a t e d e h y d r o g e n a s e i s o z y m e s , v e r t e b r a e a n d c a e c a numbers i n an isolated, interbeeding population o f splake trout. N a t u r a l i s t e Can. 94: 297-304. G r a f i u s , M. A., S. L . F r i e s s , a n d D. B,. M i l l a r . 1968. of the p o l y d i s p e r s i t y o f a c e t y l c h o l i n e s t e r a s e by t r a n s p o r t methods i n t h e u l t r a c e n t r i f u g e . Arch. B i o c h e m . B i o p h y s . 126: 707-721. Analysis Haschemeyer, A. E . V. 1969. S t u d i e s o n t h e c o n t r o l o f p r o t e i n s y n t h e s i s i n low t e m p e r a t u r e a c c l i m a t i o n . Comp. B i o c h e m . P h y s i o l . 2 8 : 535-552. H a s s o n - V o l o c h , A. 1968. C u r a r e a n d a c e t y l c h o l i n e substance. N a t u r e 218: 330-333. receptor Hebb, C. 1963. F o r m a t i o n , s t o r a g e a n d l i b e r a t i o n o f a c e t y l c h o l i n e , p. 55-88. I n "Handbuch d e r E x p e r i m e n t e l l e n Pharmakologie". (O. E i c h l e r a n d A. F a r a h , ed.) S p i n g e r Verlag, B e r l i n . Hickman, C. P., J r . , R. A. McNabb, J . S. N e l s o n , D. E . V a n Breemen, a n d D. C o m f o r t . 1964. E f f e c t o f c o l d a c c l i m a t i o n on e l e c t r o l y t e d i s t r i b u t i o n i n r a i n b o w t r o u t (Salmo q a i x d n e r i i ) . Can. J . Z o o l . 42: 577-597. H i n e g a r d n e r , R. 1969. E v o l u t i o n o f c e l l u l a r DNA c o n t e n t i n teleost fishes. Amer. N a t u r . 102: 517-523. H o c h a c h k a , P. W. a n d G. N. Somero. 1968. The a d a p t a t i o n o f enzymes t o t e m p e r a t u r e . Comp. B i o c h e m . P h y s i o l . 2 7 : 659-688. 86 Hochachka, P. W. a n d J . K. L e w i s . 1970. In press. Holmes, R. S. a n d C. L. M a r k e r t . 1969. Immunochemical h o m o l o g i e s among s u b u n i t s o f t r o u t l a c t a t e d e h y d r o g e n a s e isozymes. N a t . A c a d . S c i . , P r o c . 64: 205-210. Ingram, V. M. 1963. The H a e m o g l o b i n s i n G e n e t i c s a n d Evolution. C o l u m b i a U n i v e r s i t y P r e s s , N.Y. Jankowsky, H. 1960. Uber d i e h o r m o n a l e B e e i n f l u s s u n g d e r Temperaturadaptation b e i m G r a s f r o s c h Rana t e m p o r a r i a . Z. V e r g l . P h y s i o l . 4 3 : 392-410. J o h n s t o n , P. V. a n d B. I . R o o t s . 1964. B r a i n l i p i d f a t t y a c i d s a n d t e m p e r a t u r e a c c l i m a t i o n . Comp. B i o c h e m . P h y s i o l . 1 1 : 303-309. J o l l e y , W. B., H. W. A l l e n , a n d 0. M. G r i f f i t h . 1967. U l t r a c e n t r i f u g a t i o n u s i n g a c r y l a m i d e g e l . A n a l . Biochem. 21: 454-461. Kanai, T. a n d J . S z e r b . 1965. M e s e n c e p h a l i c reticular a c t i v a t i n g system and c o r t i c a l a c e t y l c h o l i n e output. N a t u r e 205: 80-82. K a r l i n , A. 1967. C h e m i c a l d i s t i n c t i o n s b e t w e e n a c e t y l c h o l i n e s t e r a s e and the a c e t y l c h o l i n e r e c e p t o r . Biochim. B i o p h y s . A c t a . 139: 358-362. Kim, N.. C , A. D ' l o r i o , a n d W. K. P a i k . 1966. The a c t i v i t y o f LDH i s o z y m e s d u r i n g t h y r o x i n e i n d u c e d t a d p o l e metamorphosis. Can. J . B i o c h e m . 4 4 : 303-310. K o e l l e , G. B. 1969. S i g n i f i c a n c e o f a c e t y l c h o l i n e s t e r a s e i n central synaptic transmission. F e d e r a t i o n P r o c . 28: 95-100. K o n i s h i , J . a n d C. P. Hickman, J r . 1964. T e m p e r a t u r e a c c l i m a t i o n i n the c e n t r a l nervous system o f rainbow t r o u t (Salmo g a i r d n e r i i ) . Comp. B i o c h e m . P h y s i o l . 13: 433-442. K o s t e r , . J . F . a n d C. V e e g e r . 1968. The r e l a t i o n b e t w e e n temperature-inducible a l l o s t e r i c e f f e c t s and the a c t i v a t i o n energies o f amino-acid oxidases. Biochim. Biophys. A c t a 167: 48-63. K r n j e v i c , K. 1969. C e n t r a l c h o l i n e r g i c P r o c . 28: 113-120. pathways. Federation K u s a k i n a , A. A. 1963. R e l a t i o n o f m u s c l e a n d c h o l i n e s t e r a s e thermostability i n certain fishes to specific environmental temperature c o n d i t i o n s . Federation P r o c . 2 2 : T123-126. 87 Kwon, T. W. a n d H. S. O l c o t t . 1965. Tuna m u s c l e a l d o l a s e I. P u r i f i c a t i o n and p r o p e r t i e s . Comp. B i o c h e m . P h y s i o l . 15: 7-16. L e u z i n g e r , W., M. G o l d b e r g , a n d E . C a u v i n . 1969. M o l e c u l a r properties of acetylcholinesterase. J . Mol. B i o l . 4 0 : 217-225. Licht, P. 1967. T h e r m a l a d a p t a t i o n i n t h e enzymes o f l i z a r d s i n r e l a t i o n t o p r e f e r r e d b o d y t e m p e r a t u r e s , p . 131-145. I n " M o l e c u l a r Mechanisms o f T e m p e r a t u r e A d a p t a t i o n . " (C. L . P r o s s e r , ed.) Amer. A s s . A d v a n c e . S c i . P u b l . No. 84, H o r n - S h a f e r , B a l t i m o r e . Lowry, 0. H., N. J . R o s e n b r o u g h , A. L . F a r r , a n d R. J . R a n d a l l . 19 51. P r o t e i n measurement w i t h t h e f o l i n p h e n o l reagent. J . B i o l . Chem. 193: 265-275. McKearns, K. W. 1963. Hormonal r e g u l a t i o n o f d e h y d r o g e n a s e enzymes o f t h e a n t e r i o r p i t u i t a r y . Biochim. Biophys. A c t a 73: 507-509. M a i n , A. R. 1969. K i n e t i c e v i d e n c e o f m u l t i p l e r e v e r s i b l e c h o l i n e s t e r a s e s based on i n h i b i t i o n b y organophosphates. J . B i o l . Chem. 244: 829-840. M a r k e r t , C. L . a n d R. L . H u n t e r . e s t e r a s e s i n mouse t i s s u e s . 7: 42-49. 1959. The d i s t r i b u t i o n o f J . H i s t o c h e m . Cytochem. M a r t i n , R. G. a n d B. N. Ames. 1961. A method f o r d e t e r m i n i n g the s e d i m e n t a t i o n b e h a v i o u r o f enzymes: Application to protein mixtures. J . B i o l . Chem. 2 3 6 : 1372-1379. M a r t i n , R. a n d P. R o s e n b e r g . 1968. F i n e s t r u c t u r a l a l t e r a t i o n s a s s o c i a t e d w i t h venom a c t i o n on s q u i d g i a n t n e r v e f i b e r s . J . C e l l . B i o l . 36: 341-353. M a s s a r o , E . J . a n d C. L . M a r k e r t . 1968. Isoenzyme p a t t e r n s o f salmonid f i s h e s : Evidence f o r m u l t i p l e c i s t r o n s f o r l a c t a t e dehydrogenase p o l y o p e p t i d e s . J . Exp. Z o o l . 168: 223-238. Massey, V., B. C u r t i , a n d H. G a n t h e r . 1966. A t e m p e r a t u r e d e p e n d e n t c o n f o r m a t i o n a l change i n D-amino a c i d o x i d a s e a n d i t s e f f e c t on c a t a l y s i s . J . B i o l . Chem. 2 4 1 : 2347-2357. M e t z e n b e r g , R. L., M. M a r s h a l l , W. K. P a i k , a n d P. P. Cohen. 1961. The s y n t h e s i s o f c a r b a m o y l p h o s p h a t e s y n t h e t a s e i n thyroxine treated tadpoles. J . B i o l . Chem. 236: 162-165. M o r t o n , R. K. 1955. Methods o f e x t r a c t i o n o f enzymes f r o m a n i m a l t i s s u e s , p. 25-51. I n "Methods i n E n z y m o l o g y . " V o l . 1. (S. P. C o l o w i c k a n d N. 0. K a p l a n , e d . ) . A c a d e m i c P r e s s , N.Y. 88 Nachmansohn, D. Activity. 1959. C h e m i c a l and M o l e c u l a r Academic Press, N.Y. Nachmansohn, D. 1967. La membrane e x c i t a b l e . liees a la bioelectrogenese. B u l l . Soc. 49: 1177-1189. Basis of Nerve Macromolecules Chim. B i o l . Nachmansohn, D. 1968. Proteins i n b i o e l e c t r i c i t y : o f i o n movements a c r o s s e x c i t a b l e membranes. S c i . , P r o c . 61: 1034-1041. The Nat. Nachmansohn, D. 1969. P r o t e i n s o f e x c i t a b l e membranes, 187-224. I n "Membrane P r o t e i n s . " N.Y. H e a r t A s s . L i t t l e , Brown a n d Co., Boston. control Acad. p. Symp. Namba, T. and D. G r o b . 1969. C h o l i n e s t e r a s e a c t i v i t y o f the m o t o r e n d p l a t e i n i s o l a t e d m u s c l e membrane. J . Neurochem. 15: 1445-1454. Ohno, S. and N. B. A t k i n . 1966. C o m p a r a t i v e DNA v a l u e s chromosome complements o f e i g h t s p e c i e s o f f i s h . Chromosoma 18: 455-466. and Ohno, S., V. W o l f , a n d N. B. A t k i n . 1968. f i s h t o mammals b y gene d u p l i c a t i o n . 169-187. Evolution Hereditas from 59: Oki, Y., M. T a k e d a , and S. N i s h i d a . 1966. p h y s i o l o g i c a l v a r i a t i o n s of esterases N a t u r e 212: 1390-1391. Genetic and i n mouse serum. Orr, P. R. 1955. Heat death I I . e n t i r e a n i m a l (Rana p i p i e n s ) P h y s i o l . Z o o l . 28: 294-302. D i f f e r e n t i a l response of and s e v e r a l o r g a n systems. P a p a h a d j o p o u l o s , D. 1968. Surface p r o p e r t i e s of a c i d i c phospholipids: I n t e r a c t i o n o f m o n o l a y e r s and h y d r a t e d l i q u i d c r y s t a l s w i t h u n i - and b i - v a l e n t m e t a l i o n s . B i o c h i m . B i o p h y s . A c t a 163: 240-2 54. P h i l l i s , J . W. f r o m the arousal. and G. C. Chong. 1965. Acetylcholine release cerebellar cortices: Its role i n c o r t i c a l N a t u r e 207: 1253-1255. P o d l e s k i , T. R. 1969 M o l e c u l a r f o r c e s a c t i n g between ammonium i o n s and a c e t y l c h o l i n e r e c e p t o r . Biochem. P h a r m a c o l . 18: 211-22 5. Prosser, on Z. C. L. and E . F a r h i . 1965. E f f e c t s of temperature c o n d i t i o n e d r e f l e x e s and on n e r v e c o n d u c t i o n i n f i s h . V e r g l . P h y s i o l . 50: 91-101. P r o s s e r , C. L. and T. N a g a i . 1968. E f f e c t s o f low t e m p e r a t u r e on c o n d i t i o n i n g i n g o l d f i s h , p. 171-180. In "The C e n t r a l N e r v o u s System a n d F i s h B e h a v i o u r . " (D. I n g l e , ed.) Univ. Chicago Press, Chicago. 89 Rahn, H. 1965. Gas t r a n s p o r t f r o m t h e e x t e r n a l e n v i r o n m e n t t o the c e l l , p. 3-23. I n "Development o f the L u n g . " (A. V. S. De Reuck and R. P o r t e r , e d . ) . C i b a Found. Symp. J . and A. C h u r c h i l l L t d . , L o n d o n . Read, K. R. 1964. Comparative b i o c h e m i s t r y of a d a p t a t i o n s o f p o i k i l o t h e r m s t o t h e t h e r m a l e n v i r o n m e n t , p. 39-47. I n " P r o c . Symp. Exp. M a r i n e E c o l . " Occasional Publication, No. 2. Graduate S c h o o l o f Oceanography, U n i v . o f Rhode I s l a n d . Read, K. R. H. 1967. T h e r m o s t a b i l i t y of proteins i n p o i k i l o t h e r m s , p. 93-106. In "Molecular Mechanisms of Temperature A d a p t a t i o n . " (C. L. P r o s s e r , ed.) Amer. A s s . A d v a n c e . S c i . P u b l . No. 84, H o r n - S h a f e r , Baltimore. Reeves, R. B. a n d T. L. W i l s o n . 1969. I n t r a c e l l u l a r pH i n • b u l l f r o g s t r i a t e d m u s c l e and c a r d i a c m u s c l e as a f u n c t i o n of body temperature. F e d e r a t i o n P r o c . 28: 782.(Abstr.) R o d r i g u e z De L o r e s A r n a i z , G., M. A l b e r i c i and E . De R o b e r t i s . 1967. U l t r a s t r u c t u r e and e n z y m i c s t u d i e s on c h o l i n e r g i c a n d n o n - c h o l i n e r g i c s y n a p t i c membranes i s o l a t e d f r o m b r a i n cortex. J . Neurochem. 14: 215-22 5. Roots, B. I . 1968. Phospholipids of g o l d f i s h (Carassius a u r a t u s L.) b r a i n : The i n f l u e n c e o f e n v i r o n m e n t a l temperature. Comp. B i o c h e m . P h y s i o l . 25: 457-466. Roots, B. I . and C. L. P r o s s e r . 1962. and t h e n e r v o u s s y s t e m i n f i s h . 629* Temperature a c c l i m a t i o n J . Exp. B i o l . 39: 617- % R o s e n b e r g , P. Toxicon 1965. E f f e c t s o f venoms on 3: 125-131. R o s e n z w e i g , M. R. 1957. La c h i m i e individual. (Brain chemistry P s y c h o l . F r a n c . 1: 10-11. the squid du . c e r v e a u e t and i n d i v i d u a l axon. l a comporte behaviour.) R u s s e l l , R. W. 1969. Behavioural aspects of c h o l i n e r g i c transmission. F e d e r a t i o n P r o c . 28: 121-131. R u t t e r , W. J . 1964. 23: 1248-12 57. E v o l u t i o n of a l d o l a s e . Federation Proc. S c h l a e p p e r , W. W. and R. M. T o r a c k . 1966. The u l t r a s t r u c t u r a l l o c a l i z a t i o n o f c h o l i n e s t e r a s e a c t i v i t y i n the s c i a t i c nerve o f the r a t . J . H i s t o c h e m . C y t o c h e m . 14: 369-378. 90 S e k u z u , I . , P. J u r t s h u k , J r . , and D. E . G r e e n . 1963. Studies on the e l e c t r o n t r a n s f e r s y s t e m . L i . i s o l a t i o n and c h a r a c t e r i z a t i o n o f the D - ( - ) - h y d r o x y b u t y r i c apodehydrogenase from beef h e a r t m i t o c h o n d r i a . J . B i o l . Chem. 238: 975982. S i l m a n , H. I . and A. K a r l i n . 1967. Effect c a u s e d b y s u b s t r a t e h y d r o l y s i s on t h e membrane b o u n d a c e t y l c h o l i n e s t e r a s e . P r o c . 58: 1664-1668. S m i t h i e s , 0., G. E . C o n n e l l , r e a r r a n g e m e n t s and the N a t u r e 196: 232-236. o f l o c a l pH c h a n g e s a c t i v i t y of Nat. Acad. S c i . , and G. H. D i x o n . 1962. Chromosomal e v o l u t i o n of h a p t o g l o b i n genes. Somero, G. N. 1969. E n z y m i c mechanisms o f t e m p e r a t u r e compensation: Immediate and e v o l u t i o n a r y e f f e c t s o f t e m p e r a t u r e on enzymes o f a q u a t i c p o i k i l o t h e r m s . Amer. N a t u r . 103: 517-530. Somero, G. N. and A. L. D e V r i e s . o f some a n t a r c t i c f i s h e s . 1967. Science Temperature t o l e r a n c e 156: 257-258. Somero, G. N. and P. W. H o c h a c h k a . 1968. The e f f e c t o f t e m p e r a t u r e on c a t a l y t i c and r e g u l a t o r y f u n c t i o n s o f p y r u v a t e k i n a s e s o f the r a i n b o w t r o u t and the a n t a r c t i c f i s h , Trematomus b e r n a c c h i i . B i o c h e m . J . 110: 395-400. Somero, G. N. a n d P. W. H o c h a c h k a . 1969. Isoenzymes and s h o r t term temperature compensation i n p o i k i l o t h e r m s : A c t i v a t i o n of l a c t a t e dehydrogenase isoenzymes by temperature decreases. N a t u r e 223: 194-195. Srere, P. A. 1968. S t u d i e s on p u r i f i e d c i t r a t e enzymes: M e t a b o l i c i n t e r p r e t a t i o n s , p. 11-21. In "Metabolic Roles o f C i t r a t e . " (T. W. Goodwin, e d . ) . Biochem. Symp. No. 27. Academic Press, London. Soc. Stadtman, E. R. 1966. A l l o s t e r i c r e g u l a t i o n o f enzyme a c t i v i t y p. 41-154. I n "Advan. E n z y m o l . " ( F . F. Nord, e d . ) . I n t e r s c i e n c e P u b l i s h e r s , N. Y. T a n a k a , R., and K. P. S t r i c k l a n d . 1965. Role of p h o s p h o l i p i d i n the a c t i v a t i o n o f N a , K - a c t i v a t e d adenosine t r i p h o s p h a t a s e of b e e f b r a i n . A r c h . Biochem. B i o p h y s . I l l : 583-592. + + T o b i a s , J . M., D. P. A g i n , and R. P a l o w s k i . 1962. P h o s p h o l i p i d - c h o l e s t e r o l membrane m o d e l : c o n t r o l o f r e s i s t a n c e by ions or c u r r e n t flow. J . Gen. P h y s i o l . 45: 989-1001. Tomkins, G. M., T. D. G e l e h r t e r , D. G r a n n e r , D. M a r t i n , J r . , H. H. Samuels and E. B. Thompson. 1969. Control of s p e c i f i c gene e x p r e s s i o n i n h i g h e r o r g a n i s m s . Science 166: 1474-1480. 91 T z a g o l o f f , A. a n d D. H. MacLennan. 1965. S t u d i e s o f t h e e l e c t r o n t r a n s p o r t system. LXIV. Role o f p h o s p h o l i p i d s i n cytochrome o x i d a s e . B i o c h i m . B i o p h y s . A c t a 99: 476-485. Ushakov, B. P. 1967. C o u p l e d e v o l u t i o n a r y c h a n g e s i n p r o t e i n t h e r m o s t a b i l i t y , p . 107-130. I n " M o l e c u l a r Mechanisms of Temperature A c c l i m a t i o n . " (C. L . P r o s s e r , e d . ) . Amer. A s s . A d v a n c e . S c i . P u b l . No. 84, H o r n - S h a f e r , Baltimore. V a n a t t a , J . C. 1969. Exchange o f p h o s p h o l i p i d - b o u n d Na i n toad bladder with Na. S o c . E x p . B i o l . Med., P r o c . 131: 1450-1453. 2 4 V a r n e r , J . E . , G. Ramchandra. 1964. H o r m o n a l c o n t r o l o f enzyme s y n t h e s i s i n b a r l e y e n d o s p e r m . Nat. Acad. S c i . , P r o c . 52: 100-106. V e g o t s k y , A. a n d E . F r i e d e n , 1958. The s i g n i f i c a n c e o f s u b s t r a t e c o n c e n t r a t i o n t o i n v i v o enzyme r e a c t i o n s . E n z y m o l o g i a 19: 143-150. V e s s e l l , E . S. a n d K. L . Y i e l d i n g . 1966. E f f e c t o f pH, i o n i c s t r e n g t h and m e t a b o l i c i n t e r m e d i a t e s on the r a t e s o f h e a t i n a c t i v a t i o n o f l a c t a t e dehydrogenase isozymes. N a t . A c a d . S c i . , P r o c . 56: 1317-1324. Vroman, H. E . a n d J . R. C. Brown. 1963. E f f e c t o f t e m p e r a t u r e on t h e a c t i v i t y o f s u c c i n i c d e h y d r o g e n a s e f r o m t h e l i v e r s o f r a t s and f r o g s . J . C e l l . Comp. P h y s i o l . 61: 129-131. Walsh, R. R. a n d S. E . D e a l . 1957. R e v e r s i b l e c o n d u c t i o n b l o c k p r o d u c e d b y l i p i d - i n s o l u b l e q u a t e r n a r y ammonium ions i n cetyl-trimethylammonium bromide t r e a t e d nerves. Amer. J . P h y s i o l . 197: 547-550. W a t l i n g t o n , C. 0. a n d W. R. H a r l a n , and l i p i d c o n t e n t o f i s o l a t e d P h y s i o l . 2 1 7 : ' 1004-1008. J r . 1969. frog skin. Ion t r a n s p o r t Amer. J . Watts, D. C. 1968. V a r i a t i o n i n enzyme s t r u c t u r e a n d f u n c t i o n : The g u i d e l i n e s o f e v o l u t i o n , p . 1-114. I n "Advances i n Comparative P h y s i o l o g y and B i o c h e m i s t r y . " V o l . 3. (0. L o w e n s t e i n , e d . ) . A c a d e m i c P r e s s , N.Y. Watts, R. L . a n d D. C. W a t t s . 1969. Gene d u p l i c a t i o n a n d t h e e v o l u t i o n o f enzymes. N a t u r e 217: 112 5-1130. Weiss, B. a n d A. H e l l e r . 1969. M e t h o d o l o g i c a l p r o b l e m s i n e v a l u a t i n g t h e r o l e o f c h o l i n e r g i c mechanisms i n behaviour. F e d e r a t i o n P r o c . 2 8 : 135-146. 92 W e t l a u f e r , D. B. 1962. U l t r a v i o l e t s p e c t r a o f p r o t e i n s a n d amino a c i s , p. 303-390. I n "Advances i n P r o t e i n C h e m i s t r y . " V o l . 17. (C. B. A n f i n s e n , J r . , M. L . Ansohn, K. B a i l e y , a n d J . T. E d s a l l , e d . ) . A c a d e m i c P r e s s , N.Y. W h i t t a k e r , V. P. 1965. The a p p l i c a t i o n o f s u b c e l l u l a r f r a c t i o n a t i o n techniques t o the study o f b r a i n f u n c t i o n . P r o g . B i o p h y s . M o l . B i o l . 15: 39-96. W i l s o n , I . B. a n d E . C a b i b . 1956. Acetylcholinesterase: E n t h a l p i e s and e n t r o p i e s o f a c t i v a t i o n . J . Amer. Chem. Soc. 78: 202-207. W i l s o n , I . B. a n d M. Cohen. 1953. The e s s e n t i a l i t y o f acetylcholinesterase i n conduction. Biochim. Biophys. A c t a . 11: 147-156. Y a n a r i , S. a n d F . A. B o v e y . 1960. I n t e r p r e t a t i o n o f t h e u l t r a v i o l e t s p e c t r a l changes o f p r o t e i n s . J . B i o l . Chem. 235: 2818-2826.
© Copyright 2025 Paperzz