Quiz 12 1 t2 − 1 1. (a) Evaluate the integral ∫ dt. 0 t4 − 1 Solution: ∫ 1 √ 3 0 1 1 1 √ √ √ t2 − 1 t2 − 1 1 π 3 3 3 = . dt = dt = dt = arctan t∣ ∫ ∫ 2 4 2 2 0 t −1 (t − 1) (t + 1) t +1 6 0 0 1 sin x dx = 0. (b) Explain why ∫ −1 1 + x2 sin x Solution: The function f (x) = 1+x 2 is an odd function on the interval [−1, 1], f (−x) = −f (x). 2. What is wrong with the equation? ∫ Solution: The integrand f (x) = not applicable. 1 cos2 x π 0 π 1 dx = tan x∣ = 0. 2 0 cos x is discontinuous at x = π , 2 hence the Evaluation Theorem is 3. Use the Fundamental Theorem of Calculus to find the derivative of y = ∫ Solution: First we rewrite y(x) = ∫ = −∫ cos x sin x sin x 0 (1 + v 2 )10 dv = ∫ (1 + v 2 )10 dv + ∫ 0 sin x cos x 0 (1 + v 2 )10 dv + ∫ cos x 0 cos x sin x (1 + v 2 )10 dv. (1 + v 2 )10 dv (1 + v 2 )10 dv and then apply the Fundamental Theorem of Calculus y ′ (x) = −(1 + sin2 x)10 ⋅ cos x + (1 + cos2 x)10 ⋅ (− sin x) 4. Find the average value of the function f (x) = 1 x on the interval [1, 4]. Solution: fave = 4 1 4 2 1 1 dx = ln ∣x∣∣ = ln 2. ∫ 1 4−1 1 x 3 3 5. Use the Substitution Rule to evaluate: (a) the indefinite integral ∫ 5t sin(5t )dt Solution: t t ====== ∫ 5 sin(5 )dtdu=5 t ln 5 dt u(t)=5t 1 1 cos(5t ) + C. ∫ sin u du = − ln 5 ln 5 1 ez + 1 (b) the definite integral ∫ dz 0 ez + z Solution: ∫ z=1 z=0 u=e+1 1 u=e+1 ez + 1 u(z)=ez +z dz ====== du = ln ∣u∣ ∣ = ln(e + 1) ∫ z z u=1 e + z du=(e +1) dz u=1 u
© Copyright 2026 Paperzz