Quadric Surfaces §12.6 09 September 2013 Review: Completing The Square. Question: Fill in the blank to make a perfect square: x 2 + Ax + Review: Completing The Square. Question: Fill in the blank to make a perfect square: x 2 + Ax + Answer: x 2 + Ax + (A/2)2 = x 2 + Ax + A2 /4 = (x + A/2)2 . Review: Completing The Square. Question: Fill in the blank to make a perfect square: x 2 + Ax + Answer: x 2 + Ax + (A/2)2 = x 2 + Ax + A2 /4 = (x + A/2)2 . Question: Fill in the blank to make a perfect square: 9x 2 + 30x + Review: Completing The Square. Question: Fill in the blank to make a perfect square: x 2 + Ax + Answer: x 2 + Ax + (A/2)2 = x 2 + Ax + A2 /4 = (x + A/2)2 . Question: Fill in the blank to make a perfect square: 9x 2 + 30x + Answer: 9x 2 + 30x + = (3x + B)2 so 2 · 3B = 30 =⇒ B = 5 =⇒ fill in 52 : 9x 2 + 30x + 25 = (3x + 5)2 . Clicker Question: Completing The Square. Fill in the blanks to make perfect squares: (x 2 − 10x + ) + (y 2 + 3y + ) A. 25, 9/2 B. −25, 9/2 C. 25, 9/4 D. −25, 9/4 E. I don’t understand the question receiver channel: 41 session ID: bsumath275 Example: Quadric Plane Curve. Question: What does this equation define: x 2 + 10x + y 2 − 4y = 7 Example: Quadric Plane Curve. Question: What does this equation define: x 2 + 10x + y 2 − 4y = 7 Answer: First, complete squares: (x 2 + 10x + 25) + (y 2 − 4y + 4) = 36 Example: Quadric Plane Curve. Question: What does this equation define: x 2 + 10x + y 2 − 4y = 7 Answer: First, complete squares: (x 2 + 10x + 25) + (y 2 − 4y + 4) = 36 or (x + 5)2 + (y − 2)2 = 36 It is the equation of Example: Quadric Plane Curve. Question: What does this equation define: x 2 + 10x + y 2 − 4y = 7 Answer: First, complete squares: (x 2 + 10x + 25) + (y 2 − 4y + 4) = 36 or (x + 5)2 + (y − 2)2 = 36 It is the equation of a circle, centered at Example: Quadric Plane Curve. Question: What does this equation define: x 2 + 10x + y 2 − 4y = 7 Answer: First, complete squares: (x 2 + 10x + 25) + (y 2 − 4y + 4) = 36 or (x + 5)2 + (y − 2)2 = 36 It is the equation of a circle, centered at (−5, 2) with radius 6. Clicker Question: Circle Equation. Find the center and radius of the circle defined by x 2 − 6x + y 2 + 2y = 6 A. Center: (−6, 2) Radius: 6 B. Center: (6, −2) Radius: C. Center: (−3, 1) Radius: 16 D. Center: (3, −1) Radius: 4 √ 6 E. I don’t understand the question. receiver channel: 41 session ID: bsumath275 Quadric Plane Curves. Equations in R2 : Curve equation form Line linear Circle (x − h)2 (y − k)2 + =1 r2 r2 X 2 + Y 2 = const. Ellipse (x − h)2 (y − k)2 + =1 a2 b2 X 2 + Y 2 = const. Hyperbola (x − h)2 (y − k)2 − =1 a2 b2 X 2 − Y 2 = const. Parabola x2 = y X2 = Y Example: Quadric Surface x 2 − 5x + y 2 + 8y + z 2 + 4z = 4 Complete squares: Example: Quadric Surface x 2 − 5x + y 2 + 8y + z 2 + 4z = 4 Complete squares: (x 2 − 5x + 25/4) + (y 2 + 8y + 16)+(z 2 + 4z + 4) = 4 + 25/4 + 16 + 4 = 121/4 Example: Quadric Surface x 2 − 5x + y 2 + 8y + z 2 + 4z = 4 Complete squares: (x 2 − 5x + 25/4) + (y 2 + 8y + 16)+(z 2 + 4z + 4) = 4 + 25/4 + 16 + 4 = 121/4 or (x − 5/2)2 + (y + 4)2 + (z + 2)2 = (11/2)2 Example: Quadric Surface x 2 − 5x + y 2 + 8y + z 2 + 4z = 4 Complete squares: (x 2 − 5x + 25/4) + (y 2 + 8y + 16)+(z 2 + 4z + 4) = 4 + 25/4 + 16 + 4 = 121/4 or (x − 5/2)2 + (y + 4)2 + (z + 2)2 = (11/2)2 Sphere centered at (5/2, −4, −2), radius 11/2. Example, Changed. Sphere: (x − 5/2)2 + (y + 4)2 + (z + 2)2 = (11/2)2 Changed: 2 (x − 5/2) + y +4 3 2 + (z + 2)2 = (11/2)2 Example, Changed. Sphere: (x − 5/2)2 + (y + 4)2 + (z + 2)2 = (11/2)2 Changed: 2 (x − 5/2) + y +4 3 2 + (z + 2)2 = (11/2)2 Stretched by a factor of 3 in the y direction. Example, Changed. Sphere: (x − 5/2)2 + (y + 4)2 + (z + 2)2 = (11/2)2 Changed: 2 (x − 5/2) + y +4 3 2 + (z + 2)2 = (11/2)2 Stretched by a factor of 3 in the y direction. Ellipsoid (stretched sphere) Sphere and Ellipsoid Equation Form. x2 + y2 + z2 = r2 x 2 y 2 z 2 + + =1 r r r Sphere Ellipsoid x 2 a + y 2 b + z 2 c =1 Spheres and ellipsoids have equations of the form X 2 + Y 2 + Z 2 = const. Other forms. Form Quadratic Signs Surface X2 + Y 2 + Z2 = 1 +++ sphere/ellipsoid X2 + Y 2 = Z2 + 1 X2 + Y 2 = Z2 − 1 X2 + Y 2 = Z2 ++− +−− ++− hyperboloid of one sheet hyperboloid of two sheets cone X2 + Y2 = Z X2 − Y2 = Z ++0 +−0 elliptic parabaloid hyperbolic parabaloid Others: cylinders & degenerate Other forms. Form Quadratic Signs Surface X2 + Y 2 + Z2 = 1 +++ sphere/ellipsoid X2 + Y 2 = Z2 + 1 X2 + Y 2 = Z2 − 1 X2 + Y 2 = Z2 ++− +−− ++− hyperboloid of one sheet hyperboloid of two sheets cone X2 + Y2 = Z X2 − Y2 = Z ++0 +−0 elliptic parabaloid hyperbolic parabaloid Others: cylinders & degenerate Other forms. Form Quadratic Signs Surface X2 + Y 2 + Z2 = 1 +++ sphere/ellipsoid X2 + Y 2 = Z2 + 1 X2 + Y 2 = Z2 − 1 X2 + Y 2 = Z2 ++− +−− ++− hyperboloid of one sheet hyperboloid of two sheets cone X2 + Y2 = Z X2 − Y2 = Z ++0 +−0 elliptic parabaloid hyperbolic parabaloid Others: cylinders & degenerate *May switch X /Y /Z (e.g., cone Y 2 + Z 2 = X ) **Challenge: “mixed” terms xy , xz, yz (not used in class). Traces. I Traces: Intersections with vertical planes x = d or y = e, or horizontal planes z = f I For example: ellipsoid I intersection with x = d: y 2 b + x 2 a z 2 c + y 2 b + c 2 d =1− , a ellipse. I z 2 traces on y = e, on z = f : also ellipses =1 Clicker Question: Hyperboloid Traces. In a hyperboloid of one sheet, the vertical and horizontal traces are: A. Vertical: lines Horizontal: ellipses B. Vertical: ellipses Horizontal: hyperbolas C. Vertical: hyperbolas Horizontal: ellipses D. I don’t understand the question. receiver channel: 41 session ID: bsumath275
© Copyright 2026 Paperzz