bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. AlternativemiRNAs:Humansequencesmisidentifiedasplant miRNAsinplantstudiesandinhumanplasma KennethW.Witwer TheJohnsHopkinsUniversitySchoolofMedicine DepartmentofMolecularandComparativePathobiology DepartmentofNeurology 733N.Broadway MillerResearchBuildingRm829 BaltimoreMD21205 USA p1-410-955-9770 f1-410-955-9823 email:[email protected] 1 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. Abstract Arecentstudyreportedthat“PlantmiRNAsfoundinhumancirculatingsystemprovide evidencesofcrosskingdomRNAi”1.Analysisoftwohumanbloodplasmasequencing datasetswassaidtoprovideevidenceforuptakeofplantmiRNAsintohumanplasma.The resultswerealsopurportedlyinconsistentwithcontamination1.However,areviewof thesedatasuggeststhattheydonotsupportdietaryxenomiRuptake,butinsteadconfirm previousfindingsthatdetectionofrareplantmiRNAsinmammaliansequencingdatasetsis artifactual.OnlyoneputativeplantmiRNA(“peu-MIR2910)inthisstudymapped consistentlyabovebackground,andthissequenceisfoundinahumanrRNA.Severalother rarerbutconsistentlymappedplantmiRNAsalsohave100%ornear100%matchesto humantranscriptsorgenomicsequences,andsomedonotmaptoplantgenomesatall. Thesemisidentified“alternativemiRNAs”—includingMIR2910andMIR2911—emphasize theneedforrigorousfilteringstrategieswhenassessingpossiblexenomiRNAs. 2 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. INTRODUCTION ReportsofplantorotherdietarymiRNAs,orxenomiRs,enteringmammaliancirculation throughthediet2–5generatedexcitementforthexenomiRtransferhypothesis,yetnegative resultsofreplicationandreproductionstudieshavecastdoubtonxenomiRtransferasa generalmechanism6–12.AprominentclaimofxenomiRfunction2hasalsofailedrigorous reproduction8,unmaskedastheresultofanuncontrolledvariableintheoriginal experiment.AnalysesofpublicdatasetshaverevealedthatstudiesofxenomiRsandother foreign-originnucleicacidsarefraughtwithartifacts:combinationsofcontamination, amplificationorsequencingerrors,permissiveanalysispathways,andbatcheffects9,11,13– 17.AparticularlycomprehensivestudyrecentlyfoundthatforeignmiRNAsinhuman biofluidsandtissuesdonotmatchhumanfoodconsumption,aremarkedbybatcheffects, andarethusmostparsimoniouslyexplainedasartifacts14.Studiesoforganismswithno exposuretoplantshavealsofoundevidenceofthesametypesofapparentplant contaminationthatplaguesomemeasurementsofhumansamples9,18.Liuetal1mapped sequencingdatafromtwostudiesofhumanplasmaandothersamples19,20tovariousplant genomesusinga2010plantmiRNAdatabase,PMRD21,concludingthatpreviousreportsof dietaryxenomiRtransferaresupported.Inthisbriefreport,theseresultsareexamined critically. RESULTS Dataevaluation Across-checkofthesourcefilesandarticlesshowsthattheplasmadataevaluatedbyLiuet alwerefrom198plasmasamples,not410asreported.Ninomiyaetalsequencedsix humanplasmasamples,sixPBMCsamples,and11culturedcelllines19.Yuanetal sequenced192humanplasmalibraries(preparedfrompolymer-precipitatedplasma particles)20.Eachlibrarywassequencedonce,andthenasecondtimetoincreasetotal reads.Countswerepresentedasreadspermillionmappedreads(rpm)20.Incontrast,Liu etalappeartohavereportedtotalmappedreadsintheirdatatable1.Yuanetalalsosetan expressioncutoffof32rpm(log2rpmof5orabove).Withanaverage12.5millionreads persample(thesumofthetworunsperlibrary),and,onaverage,abouthalfofthe sequencesmapped,the32rpmcutoffwouldtranslatetoaround200totalreadsinthe averagesampleasmappedbyLiuetal1. OnlyoneputativeplantmiRNAabovebackgroundlevels ConsultingtheLiuetalmappingtable1andtheSequenceReadArchive(SRA),resultsfrom duplicatesequencingrunsfromtheYuanetaldatasetwerecombined,andtwosamples withoutreliablereplicateswereeliminated.Atotalof1294putativeplantmiRNAshadat leastonemappedreadinatleastoneoftheremaining190samples.However,manyof thesemiRNAswereidenticalorthologsorparalogs,andmostweremappedatoneorfewer rpmonaverage,andinonlyasmallminorityofsamples.Acrossallsamples,onlyone putativeplantmiRNAmappedaboveamedian200readcutoff,roughlycorrespondingto the32rpmcutoffofYuanetal(Table1).AllotherRNAs,includingpreviouslyreported 3 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. xenomiRssuchasMIR159a,MIR168a,andtheplantribosomaldegradationfragment MIR291122–24,werethusbelowthelevelofbackgroundnoiseestablishedbytheoriginal investigators.Indeed,previouslyreportedxenomiRsweremappedinfewsamplesand below1rpm.TheabsenceoftheseRNAsisconfirmedbyLiuetal’sanalysisofthe Ninomiya,etalstudy19,whereMIR159a,MIR168a,andMIR2911mappedinnoneofthe plasmasamples.ThesingleputativeplantmiRNAthatmappedabovebackgroundlevelsin thisstudywas,again,peu-MIR2910(Table2). Loweringthethreshold:stillonlyahandfulofpossiblexenomiRs SinceonlyoneplantmiRNAappearedtomapconsistentlyabovebackground,theinclusion thresholdofYuanetalwasrelaxedtoincludeallmiRNAswiththreeormoremappedreads (Liuetaldata)in10%ormoreofthesamplesfromeitherstudy.Thesearerather permissivecriteriabutmayatleastscreenoutsomefalsepositivesduetoamplification andsequencingerrors.AllsamplesfromtheNinomiyastudywereincluded,despitethefact thatmostwerenotplasma.11miRNAssatisfiedthesecriteriafortheYuanetaldata(Table 1).(Onelow-mappingmiRNAwasexcludedbecauseitssequencecouldnotbefoundin miRBase25,26,miRMaid27,miRNEST2.028orindeedthroughanysearchesattempted.)10 satisfiedthecriteriafromtheNinomiyastudy(Table2),includingonesequencethatwas partofanother(compareath-MIRf10046-akrandath-MIRf10045-ak,Table3).However,if onlytheplasmasamplesfromthelatterstudyareconsidered,threemiRNAsremain(Table 2).Intotal,15putativemiRNAssatisfiedthepermissiveinclusioncriteria,includingfive (Yuanonly),four(Ninomiyaonly),andsix(both)(Table3). TomiRornottomiR AsmiRNAdiscovery,validation,andannotationhasadvanced,numerousreportedmiRNAs havebeenreclassifiedasdegradationfragmentsofothernoncodingRNAs(ncRNAs).A classicexampleisMIR2911,aplantrRNAdegradationfragmentthathasbeenmisidentified asamicroRNA.Interestingly,only2ofthe15miRNAsidentifiedasplantmiRNAsinthis studyareannotatedinmiRBase.Althoughsomeofthesesequencesmayrepresentrareor unusuallystructuredmiRNAs,severalarepartofnon-miRNAncRNAsorothersequences thatseemunlikely,atleastatfirstglance,togiverisetomicroRNAs.Amongtheapparently misidentifiedmiRNAsisMIR2910,themostabundantplantmiRNAidentifiedbyLiuetal. TheMIR2910sequence,UAGUUGGUGGAGCGAUUUGUC,isfoundinthehighlyconserved andexpressedlargesubunit(LSU)rRNAofplants,andhasbeenspecificallyremovedfrom miRBaseasanon-miRNA.EventhetwoidentifiedmiRNAsthatremaininmiRBase, MIR2916andMIR894,arenotabovequestion.A20nucleotidestretchofMIR2916mapto rRNA,whilethefullMIR894sequenceappearstobefoundinavarietyofplanttranscripts. Humansequencesintheplantdatabaseandvice-versa Curiously,severalsequencesdidnotmaptothespeciestowhichtheywereascribedbythe PMRD21.Unfortunately,thePMRDcouldnotbeaccesseddirectlyduringthisstudy; however,otherdatabasesappeartoprovideaccesstoitscontents.Specifically,ptcMIRf12412-akrandptc-MIRf12524-akrdidnotmaptoPopulusortootherplants.The poplartreeisalsonotacommondietarystapleofhumanpopulations.Incontrast,both sequencesmappedwith100%identityandcoveragetonumeroushumansequences(Table 3).ptc-MIRf10804-akrhadnumerous100%identityhumanmatches,plusa1-mismatch 4 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. alignmenttothehumanmiR-3929precursor.OthermiRNAs,includingMIR2911,also displayedsomelesserdegreeofmatchingtohumantranscriptsorthegenome.Strikingly, theputativeMIR2910sequenceisnotonlyafragmentofplantrRNA;ithasa100% coverage,100%identitymatchinthehuman18SrRNA(seeNR_003286.2inGenBank; Table3).ThesematchesofputativeplantRNAswithhumansequencesaredifficultto reconcilewiththestatementofLiuetalthatBLASTofputativeplantmiRNAs"resultedin zeroalignmenthit"1,suggestingthatperhapsamistakewasmade,andthattheBLAST procedurewasperformedincorrectly. CONCLUSION Inmammalianstudies,mappingofMIR2910andotherdubiousplantmiRNAsisbest explainedasmappingofhumandegradomefragmentstoplantRNAsthatareinsomecases genuinesequencesbutnotmiRNAs,andinothercases,humansequencesthathave contaminatedplantRNAsamplesanddatabases.Re-analysisoftheresultsofLiuetal1thus echoestherecentfindingsofKang,Bang-Berthelsen,andcolleagues14,aswellasprevious negativefindingssurroundingdietaryxenomiRs,summarizedabove.Astringentdata analysisprocedure,suchasfilteringallreadsagainsttheingestingorganism genome/transcriptomewithoneortwomismatches,thenrequiringperfectmatchesof remainingreadsagainstplantorotherforeignorganisms,wouldengenderhigher confidencethat“foreign”RNAsarenotsimplyamplificationorsequencingartifacts.Indeed, pre-mappingtotheingestingorganism’sgenomemaynotbesufficient;asshown14,the largestnumberofxenomiRsinsomehumanstudiesarefromrodents,likelybecauseof proximityinresearchlaboratories.Therefore,itmaybebesttoscreenagainstmammalian sequencesingeneral,andperhapsalsoagainstwidespreadmicrobecontaminants.Of course,eventhemoststringentanalysisprocedurescannotdistinguishaphysical contaminantfroma“real”read;thereforestrictprocesscontrolsarealsoneededtoassess possiblecontamination.Ingeneral,suchcontrolshavenotbeendoneinexistingstudies. ThisreportunderlinesthedangerinassumingthatxenomiRsinmammalianmaterial originatefromthediet.Whenthespeciesandrolesarereversed—forexample,withthe findingofhumansequencesinalistofpoplartreemiRNAs—fewanalystswouldconclude thatpoplartreesconsumehumans.Thesimplestexplanationisthatthesequencedplant materialwascontaminatedwithhumannucleicacid.Inthesameway,theextremelylowlevel,variable,andbatch-effectproneconcentrationsofseveralplantsequencesinhuman plasmaandtissuecouldbeduetouptakefromthediet,albeitatlevelsfartoolowtoaffect physiologicprocesses.However,artifactremainsthesimplestexplanation. METHODS PlantmappingresultsfromLiuetal1(totalmappedcounts)weredownloadedfromthe BMCGenomicswebsite.Accessionnumbersofsequencingdatasetswerecheckedagainst 5 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. thepublicationsofNinomiyaetal19andYuanetal20,aswellastheSequenceReadArchive (SRA,https://www.ncbi.nlm.nih.gov/sra).DataweresortedandanalyzedinMicrosoft Excel.PlantmiRNAsequenceswereobtainedfrommiRBase(http://mirbase.org/)29. BecausecertainplantsequenceshavebeenremovedfrommiRBasebecausetheyhavebeen identifiedasncRNAdegradationartifacts,theplantmicroRNAdatabase(PMRD)21was consulted;however,repeatedattemptstoaccessthesite (http://bioinformatics.cau.edu.cn/PMRD)wereunsuccessful,soinformationwasretrieved insteadfrommiRMaid(http://140.mirmaid.org/home)27ormiRNEST2.0 (http://rhesus.amu.edu.pl/mirnest/copy/home.php)28.Allanalysisfilesareavailableon request([email protected]). 6 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. References 1. Liu,Y.-C.,Chen,W.L.,Kung,W.-H.&Huang,H.-D.PlantmiRNAsfoundinhuman circulatingsystemprovideevidencesofcrosskingdomRNAi.BMCGenomics18,112 (2017). 2. Zhang,L.etal.ExogenousplantMIR168aspecificallytargetsmammalianLDLRAP1: evidenceofcross-kingdomregulationbymicroRNA.CellRes22,107–126(2012). 3. Chin,A.R.etal.Cross-kingdominhibitionofbreastcancergrowthbyplantmiR159. CellRes.26,217–28(2016). 4. Liang,H.etal.Effectivedetectionandquantificationofdieteticallyabsorbedplant microRNAsinhumanplasma.JNutrBiochem26,505–512(2015). 5. Baier,S.R.,Nguyen,C.,Xie,F.,Wood,J.R.&Zempleni,J.MicroRNAsAreAbsorbedin BiologicallyMeaningfulAmountsfromNutritionallyRelevantDosesofCowMilkand AffectGeneExpressioninPeripheralBloodMononuclearCells,HEK-293KidneyCell Cultures,andMouseLivers.JNutr(2014).doi:jn.114.196436 [pii]10.3945/jn.114.196436 6. Snow,J.W.,Hale,A.E.,Isaacs,S.K.,Baggish,A.L.&Chan,S.Y.Ineffectivedeliveryof diet-derivedmicroRNAstorecipientanimalorganisms.RNABiol10,1107–1116 (2013). 7. Witwer,K.W.,McAlexander,M.A.,Queen,S.E.&Adams,R.J.Real-timequantitative PCRanddropletdigitalPCRforplantmiRNAsinmammalianbloodprovidelittle evidenceforgeneraluptakeofdietarymiRNAs:Limitedevidenceforgeneraluptake ofdietaryplantxenomiRs.RNABiol10,1080–1086(2013). 8. Dickinson,B.etal.LackofdetectableoralbioavailabilityofplantmicroRNAsafter feedinginmice.NatBiotechnol31,965–967(2013). 9. Tosar,J.P.,Rovira,C.,Naya,H.&Cayota,A.Miningofpublicsequencingdatabases supportsanon-dietaryoriginforputativeforeignmiRNAs:underestimatedeffectsof contaminationinNGS.RNA20,754–757(2014). 10. Micó,V.,Martín,R.,Lasunción,M.A.,Ordovás,J.M.&Daimiel,L.Unsuccessful DetectionofPlantMicroRNAsinBeer,ExtraVirginOliveOilandHumanPlasmaAfter anAcuteIngestionofExtraVirginOliveOil.PlantFoodsHum.Nutr.71,102–8(2016). 11. Auerbach,A.,Vyas,G.,Li,A.,Halushka,M.&Witwer,K.Uptakeofdietarymilk miRNAsbyadulthumans:avalidationstudy.F1000Research5,721(2016). 12. Witwer,K.W.ContaminationorartifactsmayexplainreportsofplantmiRNAsin humans.J.Nutr.Biochem.26,1685(2015). 13. Lusk,R.W.Diverseandwidespreadcontaminationevidentintheunmappeddepths ofhighthroughputsequencingdata.PLoSOne9,e110808(2014). 14. Kang,W.etal.Surveyof800+datasetsfromhumantissueandbodyfluidreveals XenomiRsarelikelyartifacts.RNArna.059725.116(2017). doi:10.1261/rna.059725.116 15. Zhang,Y.etal.Analysisofplant-derivedmiRNAsinanimalsmallRNAdatasets.BMC Genomics13,381(2012). 16. Bağcı,C.&Allmer,J.OneStepForward,TwoStepsBack;Xeno-MicroRNAsReported inBreastMilkAreArtifacts.PLoSOne11,e0145065(2016). 17. Witwer,K.W.&Hirschi,K.D.Transferandfunctionalconsequencesofdietary microRNAsinvertebrates:Conceptsinsearchofcorroboration.BioEssays36,394– 7 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 406(2014). Zheng,L.-L.etal.Exo-miRExplorer:AComprehensiveResourceforExploringand ComparativelyAnalyzingExogenousMicroRNAs.Front.Microbiol.8,126(2017). Ninomiya,S.etal.PotentialsmallguideRNAsfortRNaseZLfromhumanplasma, peripheralbloodmononuclearcells,andculturedcelllines.PLoSOne10,e0118631 (2015). Yuan,T.etal.PlasmaextracellularRNAprofilesinhealthyandcancerpatients.Sci. Rep.6,19413(2016). Zhang,Z.etal.PMRD:plantmicroRNAdatabase.NucleicAcidsRes.38,D806–D813 (2010). Zhou,Z.etal.Honeysuckle-encodedatypicalmicroRNA2911directlytargets influenzaAviruses.CellRes.25,39–49(2015). Yang,J.etal.Anomalousuptakeandcirculatorycharacteristicsoftheplant-based smallRNAMIR2911.Sci.Rep.6,26834(2016). Yang,J.,Kongchan,N.,PrimoPlanta,C.,Neilson,J.R.&Hirschi,K.D.Theatypical genesisandbioavailabilityoftheplant-basedsmallRNAMIR2911:bulkingupwhile breakingdown.Mol.Nutr.FoodRes.1600974(2017).doi:10.1002/mnfr.201600974 Kozomara,A.&Griffiths-Jones,S.miRBase:annotatinghighconfidencemicroRNAs usingdeepsequencingdata.NucleicAcidsRes.42,D68-73(2014). Griffiths-Jones,S.,Grocock,R.J.,vanDongen,S.,Bateman,A.&Enright,A.J.miRBase: microRNAsequences,targetsandgenenomenclature.NucleicAcidsRes34,D140-4 (2006). Jacobsen,A.,Krogh,A.,Kauppinen,S.&Lindow,M.miRMaid:aunifiedprogramming interfaceformicroRNAdataresources.BMCBioinformatics11,29(2010). Szcześniak,M.W.&Makałowska,I.miRNEST2.0:adatabaseofplantandanimal microRNAs.NucleicAcidsRes.42,D74–D77(2014). Kozomara,A.&Griffiths-Jones,S.miRBase:annotatinghighconfidencemicroRNAs usingdeepsequencingdata.NucleicAcidsRes42,D68-73(2014). 8 bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. PutativemiRNA Samplesw/ reads≥3 Average total counts Median total counts Max Est.median rpminavg sample peu-MIR2910 190 1143.4 1072.5 2020 180.6 peu-MIR2916 190 119.7 115 315 19.4 tae-MIR2005 178 8.7 9 23 1.5 peu-MIR2914 169 14.3 9 348 1.5 tae-MIR2018 167 5.9 6 14 1.0 ath-MIRf10482-akr 161 7.3 6 29 1.0 ppt-MIR896 147 4.6 4 15 0.7 ptc-MIRf12412-akr 47 2.7 2 18 0.3 peu-MIR2911 42 2.6 2 10 0.3 ppt-MIR894 39 2.3 2 18 0.3 ptc-MIRf12524-akr 28 1.8 1 5 0.2 Table1.SummaryofthemostfrequentlymappingputativeplantmiRNAsintheLiuetal analysisofdatasetsfromYuanetal.Here,datafromonly190of192plasmasampleswere included,sinceallbuttheexcluded2samplesweresuccessfullysequencedtwice.miRNA inclusioncriteriawere:1)ThreetotalmappedreadsaccordingtoLiuetal’sdatainatleast10% ofthesamplesand2)discoverableputativematuresequencethroughmiRBase,miRMaid,or miRNEST2.0.An“estimatedmedianrpm”valuewascalculatedbasedonmediantotalcounts, averagereads,andthemidointofthereportedmappingpercentagerange.miRNAswith perfecthumanmatchesareinred,althoughmost(seeTable1).NotethatonlyMIR2910 consistentlyexceedstherpmthresholdsetbyYuanetal. bioRxiv preprint first posted online Mar. 25, 2017; doi: http://dx.doi.org/10.1101/120634. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. PutativemiRNA peu-MIR2910 Cells(n=17)andplasma(n=6) Samples w/ reads ≥3 21 Average Median 370 41.5 Max Plasmaonly(n=6) avg rpm 5369 21.3 Samples w/ reads ≥3 6 Average Median 1210 480.5 Max avg rpm 5369 83.2 ptc-MIRf10804-akr 17 26 26 60 1.2 0 0 0 ptc-MIRf12412-akr 17 63 61 156 2.8 0 0 0 tae-MIR2018 17 39 29 163 1.7 0 0 0 ptc-MIRf12524-akr 10 13 10.5 31 0.4 2 31 0.4 tae-MIR2005 7 17 11 69 0.4 0 0 0 ath-MIRf10045-akr 4 5 4 10 0.1 0 0 0 ath-MIRf10046-akr 4 5 4 10 0.1 0 0 0 peu-MIR2914 3 26 11 81 0.3 3 81 1.2 peu-MIR2915 3 5 4.5 8 0.0 0 0 0 16 16 33.7 19 Table2.PutativeplantmiRNAmappingfromtheNinomiyaetaldataset.Thisdataset consistedofbothcellularandplasmamiRNA.Here,allresultsareshowninthelefthalfofthe table,andplasmaresultsontheright.miRNAinclusioncriteriawere:1)Threetotalmapped readsaccordingtoLiuetal’sdatainatleast10%ofthesamples(cellsandplasmatogether)and 2)discoverableputativematuresequencethroughmiRBase,miRMaid,ormiRNEST2.0.“Avg rpm”iscalculatedfromthetotalmappedreadsandtotalreadspersample(notmappedreads). PutativemiRNAsthatmetinclusioncriteriaintheYuanetalstudyareitalicized,andsequences withperfecthumanmatchesareinred. PutativemiRNA Yuanet alor Sequence Ninomiya etal peu-MIR2910 Both UAGUUGGUGGAGCGAUUUGUC No rRNAfragment 18srRNA NR_003286.2 peu-MIR2916 Yuan UGGGGACUCGAAGACGAUCAUAU Yes Possible,but20ntmapstorRNA Partial tae-MIR2005 Both GGGUGUAUAGCUCAGUUGG No Partial peu-MIR2914 Both CAUGGUGGUGACGGGUGACGGAG No Unlikely:plantmitochondrial genome rRNAfragment Partial tae-MIR2018 Both GCCCGUCUAGCUCAGUUGGU No Partial ath-MIRf10482-akr Yuan UCUACUCGACUAGGUGGUCGAGUGG No Unlikely;mapstomanyplant transcripts MapstoArabidopsis Partial ppt-MIR896 Yuan GUCAAUUUGGCCGAGUGGUUAAGGC No tRNAfragment Partial ptc-MIRf12412-akr Both GCUGGGAUUACAGGCGUGAGCCACC No DoesnotmaptoPopulus Manyexact XR_001736898.1 peu-MIR2911 Yuan GGCCGGGGGACGGGCUGGGA No rRNAfragment NC_018921.2 ppt-MIR894 Yuan CGUUUCACGUCGGGUUCACC Yes ptc-MIRf12524-akr Both CCUGUAAUCCCAGCUACUCGGG No Yes,butothertranscriptome matches DoesnotmaptoPopulus 1mismatchin a20-ntstretch No Manyexact NG_053018.1 ath-MIRf10045-akr Ninomiya UCUACUCGACCUGGUGGUCGAGUGGU No Unlikely;chromosomalregion Partial ath-MIRf10046-akr Ninomiya CUCGACCUGGUGGUCGAGUGGU No Partofabovesequence Partial peu-MIR2915 Ninomiya CCCGUCUAGCUCAGUUGGUA No tRNAfragment;sequencefoundin manytranscripts Partial ptc-MIRf10804-akr Ninomiya CCUGUAAUCCCAGCACUUUGG No Unlikely;microsatellitesequence Manyexact, alsohsa-miR3929precursor (1mismatch) XR_001736898.1 (antisense) miRBase miRNAstatusinplant Human matches? Examplematch Table3.PutativeplantmiRNAsmappedbyLiuetalfromtheYuanetalorNinomiyaetalstudies.Inclusioncriteriawere:1)Three totalmappedreadsaccordingtoLiuetal’sdatainatleast10%ofthesamplesintherespectivestudiesand2)discoverableputative maturesequencethroughmiRBase,miRMaid,ormiRNEST2.0.miRNAstatuswasconsideredunlikelyifmiRBaselistedthemiRNAas anon-miRNAorifthesequencemappedtonon-miRNAregions.Humanmatcheswereexact(withanexamplegiven),“partial”(at least15ntstretcheswith100%identity),orasotherwisedescribed.Notethattheath-MIRf10046-akrisfoundwithintheathMIRf10045-akrsequence.
© Copyright 2026 Paperzz