2 Further Differentiation and Integration Contents Section ..................................................................................................................................... Page 2 Further Differentiation and Integration ..................................................................................... 1 2.1 The Derivatives of sin x and cos x .......................................................................................... 1 Definition 1 – The Derivatives of sin x and cos x ...................................................................... 1 Example 2 – Differentiating sin x and cos x .............................................................................. 1 Example 3 – Finding the Gradient of the Tangent to sin x and cos x ........................................ 2 Example 4 – Finding the Equation of the Tangent to sin x and cos x ....................................... 2 Further Examples ..................................................................................................................... 2 Example 5 – Differentiating sin x and cos x (more practice) ..................................................... 3 Example 6 – Finding the rate of change with sin x and cos x ................................................... 3 Further Examples ..................................................................................................................... 3 2.2 The Chain Rule ...................................................................................................................... 4 Definition 1 – The Chain Rule ................................................................................................... 4 Example 2 – Using the Chain Rule ........................................................................................... 4 Further Examples ..................................................................................................................... 4 Example 3 – Using the Chain Rule (Harder Examples) ............................................................ 5 Further Examples ..................................................................................................................... 5 2.3 The Chain Rule for Trigonometric Functions .......................................................................... 6 Example – Using the Chain Rule with Trigonometric Functions .............................................. 6 Further Examples ..................................................................................................................... 6 2.4 The Chain Rule for Trigonometric Functions (Finding Stationary Points) ............................... 7 Example 1 – Using the Chain Rule with Trigonometric Functions (Finding Stationary Points) . 7 Further Examples ..................................................................................................................... 7 2.5 Integrating (ax b) n dx ..................................................................................................... 8 Definition 1 – Integrating (ax b)n dx ..................................................................................... 8 Example 2 – Using the Standard Integral (ax b)n dx ............................................................ 8 Further Examples ..................................................................................................................... 8 2.6 Integrating cos x and sin x ...................................................................................................... 9 Definition 1 – The Derivatives of sin x and cos x ...................................................................... 9 Example 2 – Integrating cos x and sin x ................................................................................. 10 Example 3 – Integrating cos x and sin x ................................................................................. 10 Further Examples ................................................................................................................... 10 2.7 Definite Integrals of cos x and sin x ...................................................................................... 11 Page i Contents Section ..................................................................................................................................... Page Example 1 – Definite Integrals of sin x and cos x ................................................................... 11 Further Examples ................................................................................................................... 11 Page ii 2 Further Differentiation and Integration 2.1 The Derivatives of sin x and cos x 2.1 The Derivatives of sin x and cos x Definition 1 – The Derivatives of sin x and cos x The derivatives of y sin x and y cos x are shown below: y y y cos x y sin x x O y x O y y cos x y sin x x O d sin x cos x dx x O d cos x sin x dx Note: In calculus, sin x and cos x always mean the sine and cosine of an angle of x radians (not degrees). Example 2 – Differentiating sin x and cos x Differentiate (a) y 5cos x (b) Page 1 y 4cos x 2sin x 6 2 Further Differentiation and Integration 2.1 The Derivatives of sin x and cos x Example 3 – Finding the Gradient of the Tangent to sin x and cos x Find the gradient of the tangent to cos x sin x at: (a) x π 2 (b) x π 4 Example 4 – Finding the Equation of the Tangent to sin x and cos x Find the equation of the tangent to y 5x sin x at x 0 . Further Examples Maths In Action Page 221 Exercise 2A Page 2 2 Further Differentiation and Integration 2.2 The Chain Rule Example 5 – Differentiating sin x and cos x (more practice) Find f '( x ) when (a) 4 x sin x f (x) x (b) f (x) x x 2 cos x x2 Example 6 – Finding the rate of change with sin x and cos x Find the rate of change of f ( x ) 3cos x 2sin x at x Further Examples Maths In Action Page 222 Exercise 2B Page 3 3π . 4 2 Further Differentiation and Integration 2.2 The Chain Rule 2.2 The Chain Rule Definition 1 – The Chain Rule The chain rule states that for y f (g( x )) where y f (u ) and u g (x ) , then dy d f ' (g ( x )) (g ( x )) . dx dx Example 2 – Using the Chain Rule Differentiate (a) ( x 5) 3 (c) f (x) 2 (8 x 2) (b) ( 6 x 4) 7 (d) f ( x ) ( x 3 4)2 3 Further Examples Maths In Action Page 225 Exercise 3A Page 4 2 Further Differentiation and Integration 2.3 The Chain Rule for Trigonometric Functions Example 3 – Using the Chain Rule (Harder Examples) Differentiate with respect the relevant variable, expressing your answer with positive indices. (a) f (x) 5 3 (6 2 x ) (b) Further Examples Maths In Action Page 226 Exercise 3B Page 5 1 f (a ) a 1 a 2 2 Further Differentiation and Integration 2.3 The Chain Rule for Trigonometric Functions 2.3 The Chain Rule for Trigonometric Functions Example – Using the Chain Rule with Trigonometric Functions Differentiate the following functions. (a) f ( x ) sin6x (b) f ( x ) cos(7 2x ) (c) f (x) 3 sin8 x (d) f ( x ) 5 cos 4 x (e) f ( x ) 6 sinx (f) f (x) Further Examples Maths In Action Page 227 Exercise 4A Page 6 1 1 7x cos x 2 Further Differentiation and Integration 2.4 The Chain Rule for Trigonometric Functions (Finding Stationary Points) 2.4 The Chain Rule for Trigonometric Functions (Finding Stationary Points) Example 1 – Using the Chain Rule with Trigonometric Functions (Finding Stationary Points) Find the stationary points for the function f ( x ) (cos x 1)2 and determine their nature for 0 x π . Further Examples Maths In Action Page 228 Exercise 4B Page 7 2 Further Differentiation and Integration 2.5 Integrating 2.5 Integrating (ax b)n dx Definition 1 – Integrating (ax b)n dx For an expression of the form (ax b)n where a, b and n are constants with a 0 and n 1 there is a standard integral. n (ax b) dx (ax b)n 1 c (n 1)a Example 2 – Using the Standard Integral (ax b)n dx Integrate. (a) (c) (6 x 4)7 1 1 (b) (1 x )2 dx Further Examples Maths In Action Page 229 Exercise 5 Page 8 (9 2x )3 4 2 Further Differentiation and Integration 2.6 Integrating cos x and sin x 2.6 Integrating cos x and sin x Definition 1 – The Derivatives of sin x and cos x The derivatives of y sin x and y cos x are shown below: y y y cos x y sin x x O y x O y y cos x y sin x x O sin x dx cos x c x O cos x dx sin x c Generally sin(ax b) dx 1 a cos(ax b) dx sin(ax b) c cos(ax b) c Page 9 2 Further Differentiation and Integration 2.6 Integrating cos x and sin x Example 2 – Integrating cos x and sin x Integrate the following expressions. (a) 6sin x (c) 2sin(3x 4) (b) cos 4x Example 3 – Integrating cos x and sin x Find the particular solution to the differential equation Further Examples Maths In Action Page 230 Exercise 6 Page 10 dy π 5cos2 x when y 4 and x . dx 2 2 Further Differentiation and Integration 2.7 Definite Integrals of cos x and sin x 2.7 Definite Integrals of cos x and sin x Example 1 – Definite Integrals of sin x and cos x Evaluate (a) π 2 (b) 3π 4 π 4 π 4 sin2 x dx cos 2x π2 dx Further Examples Maths In Action Page 232 Exercise 7 Page 11
© Copyright 2026 Paperzz