The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli Observatoire de la côte d’azur Exoplanets in Lund 6-8 May 2015 1 Planets and pebbles in protoplanetary discs (1) Planets form in protoplanetary discs (few Myr, in wide circular orbits, and in multiples) (2) Simultaneously, there is a large solid component in pebbles (mm-dm sized particles) HD100546, 2Msol,~5Myr. - 400 AU wide ppd - potential imaged gas giant planet at 53 AU (Quanz et al 2014) 50AU HL tau TW Hya ppd (~5Myr) [left] - 80 AU planet of 6-28 ME - ~180--300 Me in pebbles (Wilner+2005, bergin+2013) 2 Debes et al 2013 ALMA collaboration+, 2015 HL tau ppd (~1Myr) [right] - formation of planets in a ~1Myr old disc - large pebble component (Greaves et al 2008) 2 Pebble accretion dynamics 1 Bondi pebble accretion Lambrechts & Johansen, 2012 3 3 Pebble accretion dynamics 2 Hill pebble accretion Lambrechts & Johansen, 2012 - Hill regime starts above a transition mass: ⇣ r ⌘3/4 Mt ⇡ 3 ⇥ 10 3 M 5AU - accretion occurs from the full Hill radius - relative velocities are set by the Keplerian shear (independent of ) 4 4 Pebble accretion dynamics 2 Hill pebble accretion Lambrechts & Johansen, 2012 - Hill regime starts above a transition mass: ⇣ r ⌘3/4 Mt ⇡ 3 ⇥ 10 3 M 5AU - accretion occurs from the full Hill radius - relative velocities are set by the Keplerian shear (independent of ) 4 4 Difference with planetesimals Ṁpeb ⇠ rH vH ⌃peb Ṁplan ⇠ 2 racc vH ⇢plan ⇢plan ⇠ ⌃plan /hplan hplan ⇠ vH /⌦K ⇠ rH Ṁpeb ⇠ rH vH ⌃peb MMSN scaling 5 See also: Ormel & Klahr 2010 Rafikov 2004 planetesimals/fragments and Levison et al 2010 5 An analytic “toy model” Lambrechts and Johansen, 2014 Birnstiel et al, 2012 ⌃p (r, t) + ⌧f (r, t) Ṁc,p (r, t) ⇡ 2(⌧f /0.1) 2/3 rH v H ⌃p 6 6 Pebble drift planets Lambrechts and Johansen, 2014 - start with compact configuration of 4 embryos - few Myr in disc with pebble surface density reduced by a factor ~5 with respect to MMSN - inside out planet formation - pebble flux filtering Ṁc 5 ⇣ ⌧f ⌘ 1/3 1 ⇣ rH ⌘2 f= = ⌘ ⇡ 0.1 r ṀF ⇣ ⌧ ⌘ 1/3 ✓ M ◆2/3 ⇣ r ⌘ f c ⇡ 0.034 0.1 ME 10 AU 1/2 17% for one core and about 50% for a ‘Solar System’ - mass budget: total mass: ~120-160 Me terrestrial mass: 50 Me/2 (inside the ice line) 7 7 Characteristics of the model - overcome type I migration ice giants form ~ in situ For -> cross over mass t! r e B y b lk a t re o m - steep initial dust-to-gas ratio dependency 8 Bucchave et al, 2012 8 The core accretion scenario wi s e l bb e p th Core accretion with pebbles: - rapid formation of the core without enhancements of the solid surface density - faster contraction of the gaseous envelope, because of pebble isolation mass 50 Envelope Core growth growth 40 - particular attention at forming ice giants Runaway gas accretion M /ME 30 20 Mc 10 0 M env 0 2 Pebble accretion scenario 2 p 0.07 g/cm , r=10 AU 4 6 t /Myr 8 10 9 9 The critical core mass Lambrechts et al 2014 - Protoplanetary disc lifetimes constrain accretion rates to be high to complete cores - critical core mass increase with accretion rate (Rafikov 2006) - The high accretion rates necessary to form the cores lead to core masses much too large compared to the gas giants in the Solar System - Therefore halting the accretion is a necessity in the core accretion scenario (or a lot of ice pollution) 10 10 The pebble isolation mass 50 Core growth 40 Runaway gas accretion Envelope contraction M /ME 30 20 M iso Mc M env 10 p 0.07 g/cm2 , r=10 AU Pebble accretion scenario 0 0 2 4 t /Myr Miso ✓ ◆3 ⇣ r ⌘3/4 H ⇡ 20 ME / r 5AU - gravity of the core perturbs gas disc - creates a pressure bump (shallow gap) that traps particles outside the accretion radius, thereby halting solid accretion - pebble isolation mass ~ critical core mass 11 11 Ice giant / gas giant divide Jupiter Saturn Uranus Neptune - radial and compositional dichotomy between gas and ice giants - gas giants in the inner disc (<10 AU) reach isolation and therefore undergo runaway gas accretion - ice giants have not undergone isolation (or only briefly). The blue lines show the least polluted envelope that can be bound to the core. 12 Lambrechts et al 2014 12 Exoplanets with envelopes R /RE 101 H2 100 H2 O SiO2 10-1 100 101 102 103 104 M /ME Data from open exoplanets catalogue 13 13 Expanding the scenario 1. 2. 3. 10-4 ME 0.01-10ME • full disc models see following talk by Bertram Bitsch • terrestrial embryo/planet formation (Guillot+2014, Johansen+2015, Morbidelli+2015, Levison/Kretke group+2015, Lambrechts in prep) • (hybrid) N-body codes Kretke & Levison, 2014, Levison+2015 , Chambers, 2014, and above 50 • doing the gas envelope contraction 14 Mordasini+a,b 2014, Ormel, 2014 Runaway gas accretion Envelope contraction 30 M /ME carefully Piso & Youdin 2014, Core growth 40 20 M iso Mc M env 10 p 0.07 g/cm2 , r=10 AU Pebble accretion scenario 0 0 2 4 t /Myr 14 Questions? • formation in a few Myr • halting solid accretion (~20 Me) form gas giants and ice giants • dust-to-planet efficiency (~50%) • metallicity correlation (steep) • overcome type I migration 15 Lambrechts & Johansen, 2014 Lambrechts, Johansen, Morbidelli, 2014 Lambrechts & Johansen, 2012 Morbidelli, Lambrechts +, 2015 submitted Bitsch, Lambrechts & Johansen, 2015 submitted 15
© Copyright 2026 Paperzz