Hopf algebras and renormalization in physics Alessandra Frabetti Banff, september 1st, 2004 Contents Renormalization Hopf algebras Matter and forces . . . . . . . . . . . . . . . . . . . . . . . . Standard Model and Feynman graphs . . . . . . . . . . . . . Quantum = quantization of classical . . . . . . . . . . . . . From classical to quantum . . . . . . . . . . . . . . . . . . . Free theories . . . . . . . . . . . . . . . . . . . . . . . . . . . Interacting theories . . . . . . . . . . . . . . . . . . . . . . . Divergent Feynamn integrals . . . . . . . . . . . . . . . . . . Dyson renormalization formulas . . . . . . . . . . . . . . . . Groups of formal diffeomorphisms and invertible series . . . BPHZ renormalization formula . . . . . . . . . . . . . . . . Hopf algebras of formal diffeomorphisms and invertible series Hopf algebra on Feynman graphs . . . . . . . . . . . . . . . Hopf algebra on rooted trees . . . . . . . . . . . . . . . . . . Alternative algebras for QED . . . . . . . . . . . . . . . . . Hopf algebras on planar binary rooted trees . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Feed back in mathematics and in physics Combinatorial Hopf algebras . . . . . . . . . Relation with operads . . . . . . . . . . . . Combinatorial groups . . . . . . . . . . . . . Non-commutative Hopf algebras and groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 19 20 21 22 Physics classical: Matter (particles) Forces (fields) • galaxies • planets, stars • gravitational • cosmic rays • weak (acts on mass, int. 10 −40 Interactions ) macro: position and velocity certainty (acts on “flavour”, int. 10−5 ) • molecule = group of atomes • residual electromagnetic (chemical link = exchange of electrons) • atom = kernel + electrons • electromagnetic e− Fem q JJ ^ T Ftot t N+ (acts on electric charge, int. 10−2 ) • X rays quantum: • kernel = group of nucleons uncertainty • γ rays • residual strong micro: position or velocity W− n −→ p + e− + ν̄e • nucleon = group of 3 quarks • strong particles = fields of type u, d (acts on “colour”, int. 1) (proton p = uud, neutron n = udd) • quark (never saw isolated) • strong force confinement Particles • leptons : e− νe Bosons µ νµ τ ντ (mass?, charge, 3 flavours) • photon γ (QED) Feynman graphs elementary particles Fermions • W + , W − , Z 0 (EW) u d c s t b 3 colours = red, blu, green) • gluon g ? (QCD) • graviton ? W− µ− −→ νµ + e− + ν̄e g u −→ d + u + d¯ (mass, charge, 3 flavours, • quarks : = quantum fields γ e− +e− −→ e− +e− • Higgs H + , H − , H 0 ? (spontaneous symmetry break) hadrons = • baryons (3 quarks) • mesons (2 quarks) ++ ¯ π − = ūd... groups of quarks p = uud, n = udd, ∆ = π + = ud, uuu... g ∆++ −→ p + π + Quantum = (canonical + path integrals) quantization of classical Fields Observables classical functionals F of field ϕ quantum self-adjoint operators O on states v ∈ Hilbert Measures values F (ϕ) ∈ R expectation value v t Ov ∈ R enough: G(xµ − y µ ) = probability from xµ to y µ where xµ ∈ Minkowski = R4 with metric (−1, 1, 1, 1), µ = 0, 1, 2, 3 From classical to quantum Lagrangian L(ϕ, ∂µϕ) = Lf ree + Lint ϕ0(t, x) = =⇒ Lint = 0 ∂L − ∂µ Euler equation ∂ϕ =⇒ Z ∂L ∂(∂µϕ) d3 p 1 i(px−ωp t) ∗ −i(px−ωp t) p ap e + ap e (2π)3 2Ep =0 =⇒ (wave) classical: ap , a∗p = numbers ∈ R or C quantum: ap , a∗p = annihilation and creation operators µ µ ϕ(x ) = ϕ0(x ) + Lint = j ϕ j = source field =⇒ Z G0 (xµ − y µ )j(y µ)d4 y µ classical: G0 (xµ − y µ ) = Green function (resolvant) quantum: G(xµ − y µ ) = G0 (xµ − y µ ) ! classical: perturbative solutions in g k Lint = g ϕ =⇒ g = coupling constant quantum: perturbative series in g indexed by Feynman graphs G(xµ−y µ ) = X n≥0 Gn (xµ−y µ ) g n = XX n |Γ|=n Uxµ−yµ (Γ) g n = X Uxµ−yµ (Γ) g |Γ| Γ Uxµ −yµ (Γ) = amplitude (integral) of Feynman graph Γ with n loops Free theories Field Free Lagrangian Euler equation Green function on momentum pµ φ(xµ ) ∈ C boson (spin 0, mass m) LKG = 21 ∂µ φ2 − 12 m2 φ2 Klein-Gordon: ∂2 2 2 ( ∂t 2 − ∇ + m )φ = 0 G0 (p) = i p2 −m2 +i ψ(xµ ) ∈ C4 fermion (spin 21 , mass m) LDir = ψ̄(iγ µ∂µ − m)ψ Dirac: (iγ µ∂µ − m)ψ = 0 S0 (p) = i γ µ pµ −m+i ∈C ∈ M4(C) γ µ = 4 × 4 Dirac matrices Aµ (xν ) ∈ C4 boson (spin 1, mass 0) LM ax = − 41 (∂ µAν − ∂ ν Aµ )2 Maxwell: D0 (p) = − λ2 (∂ν Aµ )2 ∂µ (∂ µAν − ∂ ν Aµ ) +λ∂µ ∂ ν Aµ = 0 λ = mass parameter −igµν p2 +i p p µ ν + i λ−1 λ (p2 +i)2 ∈ M4 (C) Interacting theories Interacting theory 4 φ Lagrangian LKG (φ) − 1 4! Feynman graphs 4 gφ Green function = series G(p) = X Up (Γ) g |Γ| Γ∈φ4 S(p) = QED µ µ Dµν (p) = X Γ boson More: φ3 , scalar QED, QCD = non-abelian Gauge, Yukawa, ... Feynman graph = graph Γ with - arrows depending on the fields - valence of vertices depending on the interaction term Feynman amplitude = integral U (Γ) computed from the graph Upe (Γ) e2|Γ| Γ fermion LDir (ψ) + LM ax (A ) − e ψ̄γ ψAµ = abelian Gauge X Upγ (Γ) e2|Γ| Divergent Feynman integrals 1PI Feynman graph Feynman rule: 1PI graphs: = graph Γ without bridges The Feynman amplitude is multiplicative with respect to junction of graphs =⇒ Upe ! ! connected graphs: =⇒ Upe Problems: U (Γ) = ∞ ! In particular: = S0 (p) (−ie) =⇒ = Upe R 4 d k D0,µν (k)γ ν S0(p − k)γ µ (2π) 4 (−ie) S0 (p) S0 (p)−1 Upe find finite R(Γ) - each cycle in Γ gives a divergent integral, - each cycle in a cycle gives a subdivergency in a divergency. g, e, m, ... 6= measured values ! call them bare: g0 , e0, m0 , ... =⇒ find g0 , e0, m0 from the effective: g, e, m Dyson renormalization formulas G(p; g0) = Bare Green functions: X |Γ| Up(Γ) g0 = X Gn (p) g0n with n Γ Renormalized Green functions: X Rp (Γ) g |Γ| = X Ḡn (p) g n with Ḡn (p) = X Ḡ(g) = G(g0 ) Z −1/2(g) Renormalization factors: α0 = α − αO(α) Renormalization group coupling constants renormalization factors = g0 (g) = g Z −1(g) with α0 (α) = α Z3−1(α) Z3 = 1 − O(α), g0 = g + gO(g 2 ), n α= with T T D̄µν (α) = Dµν (α0 ) Z3−1(α) Coupling constants: e20 4π Rp (Γ) ⇒ S̄(α) = S(α0) Z2−1(α) Z = 1 + O(g 2 ), α0 = |Γ|=n same for S̄(p; e2) and D̄µν (p; e2) Dyson and Ward: Up(Γ) ⇒ fine structure constant n Γ X |Γ|=n same for S(p; e20) and Dµν (p; e20) Ḡ(p; g) = Gn (p) = e2 4π Z2 = 1 + O(α) acts on Green functions: G(p; g0) 7→ Ḡ(p; g) ' 1 137 Groups of formal diffeomorphisms and invertible series Group of invertible series with product: inv G (A) = Group of diffeomorphisms with composition: Right action by composition: Gdif = QFT subgroups: f (x) = 1 + ren G Ggraphs n ( ∞ X ϕ(x) = x + f (x) × (ϕ(x), g(x)) dif ∈G X −→ inv nG ) o ϕn ∈ C Gdif n Ginv := Gren Ginv , 7→ f ren(x) = f (ϕ(x)) · g(x) ∼ = Gdif =⇒ f ren(x) = f (ϕ(x)) · f (Γ) for QED also: ⇐⇒ fn = X t f (t) ϕ(x) x Ggraphs ⊂ G Γ Gtrees abelian ⇔ A commutative A = C for Φ3 , Φ4, A = M4 (C) for QED ) Semi-direct product: Gren fn = fn x , fn ∈ A ϕn xn+1, =⇒ × ϕ(x) x ) n n=1 Ginv = (ϕ(x), ⇐⇒ ∞ X n=1 Ginv × Gdif −→ Ginv (f, ϕ) 7→ f (ϕ) Renormalization action: For bosons (φ, Aµ ): ( with f (t) = X Γ f (Γ) Ggraphs ⊂ Gtrees ⊂ G BPHZ renormalization formula To use Dyson formulas, need renormalization Z factors explicitely. X Rp (Γ) = Up (Γ) + Cp (Γ) + Bogoliubov, Parasiuk, Hepp, Zimmermann: Cp (Γ) = Up(Γ/γ1...γl ) Cp1 (γ1) · · · Cpl (γl ), 1PI γ1 ,...,γl ⊂Γ γi ∩γj =∅ deg(Γ) −Tfixed p Up(Γ) X + 1PI γ1 ,...,γl ⊂Γ γi ∩γj =∅ Up (Γ/γ1...γl ) Cp1 (γ1) · · · Cpl (γl ). Here, the 1PI subgraphs γ’s contain all the cycles which give subdivergencies. Then: Z(g) = X 1PI Γ C(Γ) g |Γ| and 2 Z2 (e ) = X 1PI Γ e 2|Γ| C (Γ) e , 2 Z3 (e ) = X 1PI Γ =⇒ Dyson global formulas not enough, need computations on Feynman graphs! C γ (Γ) e2|Γ| . Hopf algebras of formal diffeomorphisms and invertible series Toy model A = C : group G G∼ = HomAlg (C(G), C) ⇐⇒ coordinate ring C(G) := Fun(G, C) = commutative Hopf algebra C(Ginv ) ∼ = C[b1, b2, ...] Hopf algebra of invertible series: inv ∆ bn = n X 1 dn f (0) bn(f ) = fn = n! dxn bn−m ⊗ bm h∆inv (bn), f × gi = bn (f · g) m=0 Hopf algebra of diffeomorphisms (Faà di Bruno): C(Gdif ) ∼ = C[a1 , a2 , ...] dif ∆ an = n X an (ϕ) = ϕn = an−m ⊗ polynomial 1 dn+1ϕ(0) (n + 1)! dxn+1 h∆dif (an ), ϕ × ψi = an (ϕ ◦ ψ) m=0 Right coaction: δ : C(Ginv ) −→ C(Ginv ) ⊗ C(Gdif ) =⇒ hδ(bn ), f × ϕi = bn(f ◦ ϕ) Renormalization coaction: For bosons: Hren ∼ = C(Gdif ) Semi-direct coproduct: δ ren : C(Ginv ) −→ C(Ginv ) ⊗ Hren, and δ ren bn = ∆dif bn !!! Hren := C(Gdif ) n C(Ginv ) ∆ren(am ⊗ bn ) = ∆dif (am ) (δ ⊗ Id)∆inv (bn ) δ ren bn = (δ ⊗ Id)∆inv (bn) Hopf algebra on Feynman graphs Question: Since ren Gren graphs ,→ G =⇒ ren Hren −→ Hgraphs := C[1PI Γ] via an , bn 7→ X Γ, |Γ|=n can we define the renormalization coproduct on each Γ? Theorem. [Connes-Kreimer] For the scalar theory φ3 : 1) HCK = C[1PI Γ] is a commutative and connected graded Hopf algebra, with coproduct X ∆CK Γ = Γ ⊗ 1 + Γ/(γ1...γl ) ⊗ (γ1 · · · γl ) + 1 ⊗ Γ. 1PI γ1 ,...,γl ⊂Γ γi ∩γj =∅ 2) The BPHZ formula is equivalent to the coproduct ∆CK: R(Γ) = hU ⊗ C, ∆CKΓi. 3) The group of characters GCK := HomAlg (HCK , C) is the renormalization group. Example: ∆ CK = ⊗1+ ⊗ +2 Conclusions: 1) Feynman graphs = natural local coordinates in QFT 2) By Feynman rules: ⊗ +1⊗ (= basis for the algebra of functions) connected graph = junction of 1PI graphs junction = disjoint union = free product 3) Green functions = characters of the algebra of connected Feynman graphs. Hopf algebra on rooted trees Hierarchy of divergences: 1PI Feynman graphs −→ Rooted trees decorated with simple divergencies x Problem for overlapping divergences 7→ x @ @ @ @ @x x : need the difference of trees ⇒ forests Theorem. [Kreimer] For the scalar theory φ3 : 1) HR = C[T rooted trees] is a commutative and connected graded Hopf algebra, with coproduct X ∆T = T ⊗ 1 + “what remains of T ” ⊗ “branches of T ” + 1 ⊗ T . admissible cuts 2) The BPHZ formula is equivalent to the coproduct ∆K: R(T ) = hU ⊗ C, ∆KT i. Alternative algebras for QED For QED, fn and f (Γ) ∈ A = M4 (C) non-commutative: Fun(Ginv (A), C) 6= C[bn] or C[1PI Γ]! 1) Matrix elements: Basis Γij for the matrix elements f (Γij ) := (f (Γ))ij . Then Fun(Ginv (A), C) = C[1PI Γij ], but junction 6= free product! 2) Non-commutative characters: Green functions = “characters with values in A”: Gp ∼ = HomAlg (Ch1PI Γi, A). Then Ch1PI Γi is an algebra, but not necessarily Hopf. Hinv := Fun(Ginv (A), A) ∼ = Chbn, n ∈ Ni is a Hopf algebra with Simple Lemma. inv ∆ bn = bn ⊗ 1 + 1 ⊗ bn + Ginv (A) ∼ HomAlg (Hinv , A). inv Moreover Hab = C(Ginv ). Hren := C(Gdif ) n Hinv = non-comm. Hopf algebra Question: bn−m ⊗ bm , m=1 and Then n−1 X Since ren Gren trees ,→ G =⇒ ⇒ electron renormalization with ren Hren −→ Htrees := C[t ∈ Y ] via an , bn 7→ ∆ren, δ ren X |t|=n can we define the renormalization coproduct on each QED tree? t, Hopf algebras on planar binary rooted trees Theorem. [Brouder-F.] 1) Charge renormalization: commutative Hopf ∆α t = X t Hα = C[ t “what remains of , t ∈ Y ] with coproduct ” ⊗ “\-branches of t”. ∆e := (δ e ⊗ Id)∆inv e 2) Electron renormalization: coaction of Hqed on He , where • He = ChY i/(1 − ) is non-commutative Hopf with ∆inv e dual to product under • δ e : He −→ He ⊗ Hα • renormalization group: coaction extended from Hqed := Hα n He 3) Photon renormalization: coaction δ with • H = ChY i/(1 − ) is non-commutative Hopf with • Hα n Hγ H α = ∆α t − ⊗ t ; ∆qed = ∆α × ∆e . ∆γ := m323 (δ γ ⊗ σ)∆inv γ γ • δ γ : Hγ −→ Hγ ⊗ Hα t s / t\s = t ; ∆inv γ of Hα on Hγ , where dual to product over t/s = coaction extended from δ; induced by the 1-cocycle Remark: ∆γ ≡ ∆α on single trees t ∈ Y ! σ : Hγ −→ Hα σ(t1 . . . tn ) = t1 / · · · /tn . t\ s; Feed back in mathematics 1) Combinatorial Hopf algebras: Foissy, Holtkamp, Brouder, F., Krattenthaler, Loday, Ronco, Grossmann, Larson, Hoffman, Painate... 2) Relation with operads: Chapoton, Livernet, Foissy, Holtkamp, van der Laan, Loday, Ronco,... P 3) Combinatorial groups: invent group law on tree-expanded series of the form f (x) = t∈Y f (t) xt . Interesting composition! 4) Non-commutative Hopf algebras and groups: look for new duality between groups and non-commutative Hopf algebras. Need a new coproduct with values in the free product of algebras. Bergman, Hausknecht, Fresse, F., Holtkamp,... Feed back in physics 1) More computations and developpements: Kreimer, Broadhurst, Delbourgo, Ebrahimi-Fard, Bierenbaum,... 2) Hopf algebras everywhere: Connes, Kreimer’s school, Pinter et al., Brouder, Fauser, F., Oeckl, Schmitt in QFT; Patras and Cassam-Chenai in quantum chemistry... 1) Combinatorial Hopf algebras [Foissy, Holtkamp] HPRD = ChT planar rooted decorated treesi X “what remains of T ” ⊗ “branches of T ” ∆T = Hopf algebra non-commutative version of HR admissible cuts [Brouder-F.] Hdif = Chan , n ∈ Ni n m X X dif ∆ an = an−m ⊗ m=0 [F.-Krattenthaler] dif S an = n−1 X k=0 [Brouder-F.] α k=1 (−1) k+1 n k X am1 · · · amk m1 +···+mk =m m1 >0,...,mk >0 X X fα := Ch H t n1 +1 m1 n1 +···+nk+1 =n m1 +···+mk =k n1 ,...,nk+1 >0 m1 +···+mh ≥h h=1,...,k−1 H extends naturally to Hopf algebra non-commutative version of C(Gdif ) ,t ∈ Yi ··· nk +1 mk an1 · · · ank ank+1 explicit non-commutative antipode Hopf algebra analogue to Hdif non-commutative version of Hα 2) Relation with operads [Chapoton-Livernet] [Foissy, Holtkamp, Patricia?] L := Prim((HR)∗ ) fα ∼ fα )∗ ∼ H = (H = HLR P operad [van der Laan] [van der Laan] =⇒ Lie algebra from the free pre-Lie algebra on one generator related to the Loday-Ronco Hopf algebra =⇒ free dendriform Hopf algebra =⇒ S(⊕P(n)Sn ) commutative Hopf algebra P non-Σ operad =⇒ T (⊕P(n)) Hopf algebra F operad of Feynman graphs ⇒ S(⊕F (n)Sn ) = HCK operadic version 3) Combinatorial groups Tree-expanded series: Invertible series for the electron: formal symbols xt , for any tree t ∈ Y . ) ( group with the X Xproduct under t e f (t) x , f ( ) = 1 G := f (x) = f (x)\g(x) := f (t) g(s) xt\s t∈Y Invertible series for the photon: γ G = ( ( t,s∈Y X f (x) = f (t) xt , f ( ) = 1 t∈Y X Gα = ϕ(x) = ϕ(t)x Diffemorphisms for the charge: \t , ϕ( ) = 1 t∈Y ψ(x)t := µt (ψ(x)) Composition: = ( \ )/ hence µ group with the Xproduct over f (x)/g(x) := f (t) g(s) xt/s t,s∈Y ) group with the composition law (ϕ ◦ ψ)(x) := ϕ(ψ(x)) where µt is the monomial which describes t as a sequence of over and under products of ⇔ ψ(x) in each vertex of t For instance: ) (s) = (s\s)/s Theorem. [F.] 1) The sets Ge , Gγ and Gα form non-abelian groups. 2) QED renormalization at tree-level: 3) The “order” map Gα :Y N Gdiftrees ⊂ Gdif , Gα ∼ = HomAlg (Hα , C) and Gα n Ge ∼ = HomAlg (Hqed, A) induces group projections Gγ inv Ginv trees ⊂ G , Ge inv Ginv trees ⊂ G . 4) Non-commutative Hopf algebras and groups Fact: Ginv (A) still group if A non-commutative, and Hinv = Fun(Ginv (A), A) = Chbn , n ∈ Ni non-commutative Hopf Question: which duality “ group G Answer: replace coproduct ←→ non-commutative Hopf H ” ∆ : H −→ H ⊗ H with ? ∆∗ : H −→ H ? H , ? = free product, such that T (U ⊕ V ) ∼ = T (U ) ? T (V ). Call H∗ = (H, ∆∗) and look for duality G ∼ = HomAlg (H∗, A). where ⇒ Co-groups in associative algebras: [Bergman-Hausknecht,Fresse] Group of invertible series: inv ∆inv −→ Hinv ? Hinv , ∗ : H Moreover inv ∆inv ∗ (bn ) = ∆ (bn ) well defined and co-associative! Ginv (A) ∼ = HomAlg (H∗inv , A). Gdif (A) not a group, because ◦ not associative. Group of diffeomorphisms: dif ∆dif −→ Hdif ? Hdif , ∗ : H ⇒ [Holtkamp] on trees. dif ∆dif ∗ (an ) = ∆ (an ) well defined but not co-associative!
© Copyright 2026 Paperzz