JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. Bll, PAGES 25,149-25,159, NOVEMBER 10, 1996 Body waves in poroelastic media saturated by two immiscible fluids Kagan Tuncay •andM. YavuzCorapcioglu Departmentof Civil Engineering, TexasA&M University,CollegeStation Abstract. A studyof bodywavesin elasticporousmediasaturatedby two immiscible Newtonianfluidsis presented.We analyticallyshowtheexistence of threecompressionalwaves andonerotationalwavein an infiniteporousmedium.The firstandsecond compressional wavesare analogoustothefastandslowcompressionalwaves in Biot'stheory.The third compressionalwave is associated with thepressure differencebetweenthefluid phasesand dependent on theslopeof capillarypressure-saturationrelation. Effectof a second fluid phase on thefastandslowwavesis numericallyinvestigatedfor Massilionsandstone saturatedby air andwaterphases.A peakin theattenuationofthefirstandsecondcompressionalwaves is observed at highwatersaturations.Boththefirstandsecondcompressional wavesexhibita dropin thephasevelocityin thepresence of air. The resultsarecomparedwith theexperimental dataavailablein theliterature.Althoughthephasevelocityof thefirstcompressional and rotationalwavesare well predictedby the theory,thereis a discrepancy betweenthe experimental andtheoreticalvaluesof attenuationcoefficients. The causesof discrepancy are explained basedon experimentalobservations of otherresearchers. Introduction Biot'stheoryofwave propagationin linear,elastic,saturated porousmedia has been the basis of many velocity and attenuationanalyses[Blot, 1956a,b].Biot demonstratedthe presenceof two compressionaland one rotational wave in a porousmedium saturatedby a singlefluid phase.The first compressional wave (also referredto as fast wave) is analogousto the compressionalwave in elasticmedia. The second compressional wave is slowerand highlyattenuated.Because of its highlydissipativebehavior,thiswaveis very difficult to observe.The secondcompressional wavewasfirst observedby Plozza[1980] (also seeBcroqnan [1980]). However, we must note that neither of thesewavespropagateas a wave in the fluid or in the matrix alone, both traveljointly in the matrix and pore fluid. All waves are dispersedand attenuated. Attenuation arises because of the relative movement of solid andfluid phases.At low frequencies,attenuationis relatedto the permeabilityof solidmatrix. Sincelaminar flow assumption does not hold for high frequencies,the theory needs modifications[Biot, 1956b]. We refer to Corapciogluand Tmzcay[1996]for an extensivereview of Biot's theory. In additionto thethreetypesof bodywaves,othertypesof wavesexistcloseto theinterfaces.Analogousto elasticmedia, Dcr½sicv•cx[1962] and Jones[1961] showedthe existenceof surfacewaves in saturatedporous media. They examined surfacewavesby consideringthe couplingof the transverse and the fast compressionalwaves. Later Tajuddin [1984] presenteda study of Rayleigh waves consideringall three types of body waves. Love waves which appear due to stratificationof the Earth were investigatedby Deresisvdcz [1961, 1964, 1965]and Chattopadhyayand Ds[1983]. In contrastto porousmedia saturatedby a singlefluid, wavepropagationin porousmedia saturatedby multiphase fluids received limited attention from the researchers. The generaltrend is to extend Biot's formulation developedfor saturatedmedium by replacingmodel parameterswith the ones modified for the fluid-fluid or fluid-gas mixtures [Doraszd•o, 1974; Mo•hizula; 1982; Murphy, 1984; PrMs st a/., 1992].This approachresultsin two compressional waves and has been shown to be successful in predictingthe first compressionaland rotational wave velocitiesfor practical purposes. Brutsasrt[1964]whoextendedBiot'stheoryappears to be the first one to predict three compressional waves.The third compressionalwave arisesdue to presenceof a second fluid phasein the pores.BrutsasrtandLuthin [1964]provided experimentaldata which agreeswith the resultsof Brutsasrt's [1964]theory.The third compressional wavewasalsopredicted by Garg and Nayœsh[1986] and Santosst al. [1990]. We should note that in these studies,although same type of governing equations were employed, the expressionsfor materialconstantsdiffered.Miksis [1988]developeda model for waveattenuationin partially saturatedrocksbasedon the local three-phasephysicsin the pore space.Tuncay[1995] derivedthe governingequationsand constitutiverelationsof elasticporousmedia saturatedby two Newtonian fluids by employingthe volume-averaging technique. In this study,startingfrom the governingequations,we investigatethe types of waves and their characteristicsin infiniteisotropicporousmediasaturatedby two fluids.We showthat threecompressionalwavesand onerotational wave •NowatIzmirInstitute ofTechnology, Cankaya, Izmir,Turkey. exist.All wavesaredispersedandattenuated.First andsecond Copyright1996by the AmericanGeophysicalUnion. Paper number 96JB02297. 0148-0227/96/9 6JB-02297 $09.00 compressionalwavesare similar to thosein saturatedmedia. We showthat the third compressional waveoccursbecauseof the existenceof capillarypressure.Becauseof the very low velocityandhighattenuationofthethirdcompressional wave, 25,149 25,150 TUNCAY AND CORAPCIOGLU: WAVE PROPAGATION an experimentalobservationdoesnot appearto be possible. Finally, we compare the resultsof model with experimental data obtained in terms of phase velocities and attenuation coefficientsof the first compressionaland rotational waves. IN POROUS MEDIA •, 2A3IflK/l •l ( 1-a s)(A2 +K:); •,3a3lf•f/l (1- •)( 1-a s)(A2 +K•) (5) •2! lal 2 ; •22 A,=K,•(1- as)[K•s(1 - as)(K2 +A2/•) Final Set of Governing Equations (6) +K2A2A,(1 -•)/•] We startby introducingthe governingequationsfor elastic porousmedia saturatedby two immiscibleNewtonian fluids, for example,water and air. In the derivation,we assumethat there is no massexchangebetweenthe phasesand the phases are at rest. Furthermore, the solid phaseis assumedto be isotropic,experiencing smalldeformationsand providingall shearresistanceof the porousmedium. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilitiesassumingthe validity of Darcy's law. At very low saturations(i.e., residualsaturations),the theorymay not be valid sincenot all phasesof the medium are interconnected. Furthermore, the theory employedin this study is limited to low-frequencywave propagation. Let L, ] and •-be the characteristiclengths of the macroscopicscale, averaging volume, and pore scale,respectively.The requiredcondition for the volume averagingis •' << ] << L. In this studywe assumethat this requirementis satisfied,and furthermore,if ), is the wavelengthof the wave,we assume] < < X. Therefore we limit the presentstudyto low-frequencywaves.In the case of two pore fluids, the low-frequencylimit should be lower than that of a single fluid case sincethe size of averaging volumewould be larger to includethe presenceof two pore fluids.In the caseof a singleporefluid, the sizeof the averagingvolumeisdeterminedby theporestructureonly.However, when two fluids are presentin the pores, the orientation of fluid phasesis an important factor on the size of averaging a2•A3 I - K•K•$•(1-S•)(1-a•)[-K:s(1e•)+A2A ,I ; (7) •311•13 (8) where dP all•l•$_ft•; a2l •$1(1_•l) dS, A3=A ,(K•A2• +K•K• +K:A2(1- •)) (9) (10) +K•(1 -as)(K•(1 - •)+ In (4)-(10),I•r, I•., as,S,, andPeap arethedrainedbulk modulusof the solidmatrix, bulk modulusof phasei, volume fractionofthesolidphase,saturationof thenonwettingphase, andcapillary pressure, respectively. Peap, which isequal tothe pressuredifferencebetweenthe nonwettingand wetting phases,is assumedto be a function of the saturation of the nonwetting phase,S• only.Assuming the validityof Darcy's law, C• andC2 become (1-as)2dUl volume. (11) Kkr/ In addition to assumingan isotropicelasticporousmatrix saturated by two immiscible Newtonian fluids, validity of Darcy's Law, and low-frequencywave propagation, we furthermoreassumedthe validity of the relationshipbetween capillary pressureand a fluid saturation,and negligibilityof whereK, gi, ka are the intrinsicpermeability,viscosity,and crosspermeabilitiesknown as the Yuster effect. relativepermeabilityof phasei, respectively. Equations(1) The governingequationsare obtainedin termsof displaceand (3) reduceto Blots [1956a]equationsfor a singlefluid mentsof solid and fluid phasesas [ Tu•cay, 1995] •l (1-••)2(1 -•)2la 2 (12) phaseby settingSl andA2to zero. (@s;•-=V((z,,+ 7 )V'•s+ Zl:V'T+ al•V'uz) (1)CompressionalWaves The formulationfor the compressional wavesis obtained by applyingthe divergenceoperatorto (1)-(3), _ _ _ \02es ß 2 0•1 Ps;-•-=al mY •s+ •l2V2• l+•13V2•2+ CI ('•-•') •2 • (13) (3) whereanglebracketsand overbarare thevolumeaverageand intrinsicaverageoperators,respectively.Subscriptss, l, and 2 correspondto the solid phase, nonwetting phase, and wettingphase,respectively. In (1)-(3),Piandui arethedensity anddisplacement vectorof phasei, respectively. Gtr is the drained shear modulus of thesolidmatrix.Theconstants aij are given by z,,Aa-Ks[A, as(K•A:S•+K•K, +K•A2(1-•)) +Kfi•r,(1-a •)(K•( 1-•)+ •K: +A:)] \o•eI O•10• s (14) • o•s (15) Pl/'•-/' =/221V2•s +•22V2• 1+R23V2•2 --Ci (-•--•-) \•e2 2 2 P2;-•l•31V •$+ •32 V•,+•3V2•2 --•(•--•) whe• %=V.uj andall =all+4Gt/3. Thedflamtional plane ha•onic wavespropagatMgalongthez d•ction a• givenby TUNCAY AND CORAPCIOGLU: WAVE PROPAGATION IN POROUS MEDIA 25,151 where Bjisthewaveamplitude, 1[isthewavenumber, toisthe In general,for a givenfrequencyto, the polynomialin (19) has frequency,and i is the imaginarynumber.In general,1[is a complexnumber.For convenience we rewrite(16) as e/..• -•. •t•z-•0 (17) three complex roots and the wave number [, has six roots. However,onlythreeof theserootsarephysicallypossible,that is, the amplitudes of waves should decreaseso that the imaginarypart of [ must be greaterthan zero. This implies the existenceof three compressional wavesin a poroelastic where[i and[r aretheimaginaryandrealpartsof [, respec- medium saturated by two immiseible fluids. When we set tively. The imaginarypart of the wavenumber[i is usually A2=0, we find Z4=0 whichindicatesthat one of the comcalledtheattenuationcoefficient.The phasevelocityisdefined asc=(o/[r Substitution of (16)in (1)-(3)yields pressionalwavesis associatedwith the pressuredifference betweentwo fluid phases,that is, capillarypressure. RotationalWaves The formulation for the rotational wavesis obtainedby applyingthe curl operatorto (1)-(3) (18) +i,•-q-q qq B• 0 ( \a•ci,fool, acl,] q -qoq G 0 (25) - whichimpliesthat for nonzerosolutionsthe determinantof the coefficientmatrix mustbe equalto zero. This equationis known as the dispersionequation in wave mechanics.The determinantcan be expressedas Z•Xa +•2 +Z3X+ Z4.0 whereflj=Vx•j.•e substitution ofhamonic waves asgiven by Eq. (16) in Eqs. (24)-(26) yields (19) oo where X=toe/[ 2.Thecomplex coefficients of(19)aregiven by •2 (27) (20) -i +i,,,-G-G qq , Z2w• q -q C• 0 B• 0 - The dispersionequationis the determinantof the coefficient matrix x•(zlx+z9.o (21) (i)2 +2a C, p +2a and is in the form of p (28) where (29) •s)2 (22) Equation(28)showsthe existenceof a singlerotationalwave in porousmedium saturatedby two immiseiblefluids. Numerical 2 2 a,3(2a12az•-a,•a22) Z4-'ai,(a22a•3-a23)-a,2•3+ (23) Results We solve(19) and (28) for Massilion sandstonesaturated by air and water. The material propertiesof Massilion 25,152 Table TUNCAY 1. Material AND CORAPCIOGLU: Parameters of Massilion WAVE PROPAGATION Sandstone Saturatedby Air and Water Phases Parameter Symbol Bulkmodulus ofsolid matrix, GPa Bulkmodulus ofsolidgrains, GPa Shear modulus ofsolid matrix, GPa Kfr Ks Gfr Density of solid grains, kgm 3 Intrinsic permeability, m • •s Bulk modulus ofwater, GPa •2 Density ofwater, kg/m3 - - 2000 - 1900 - 1.02 35.00 1.44 2650.00 0 77 997.00 HZ Hz 15OO - ,', ,- 14.00 - 1•oo- 12oo - 1.10 11oo- Bulkmodulus ofair,MPa K1 0.145 Viscosity ofair,Pas I•l 18x10'6 2000 8 18oo- lxlO-3 P1 - ,•.1700 18oo- 2.25 Density ofair,kg/m 3 500 ........ •OOO Hz 500 Hz .... - - v is2 Viscosity ofwater, Pas P1 Value 9xlO-13 Volume fraction ofsolidphase 2200 2100 IN POROUS MEDIA o.o 1ooo After Muz'phy[1982,1984] o.'• o.'• Water o.'• o.'• •.b soturation Figure 2. Effectof watersaturationon thephase velocityof P1. sandstone takenfrom Murphy [1982, 1984]are listedin Table 1. V• G•nuchteds [1980] closedfern exp•ssions for the capflla• p•ssu•-saturation •lations a• mployed to obtain tion in the phasevelocityof P1 becauseof 1% air is almost 50%.We observea similartrendin the phasevelocityof the second compressional wave,P2(Figure3).Thethirdcompressionalwave,whicharisesbecause of the pressure difference between thefluidphases, hasthelowestphase velocity (Figure 4). Asexpected, P3 vanishes whenonlyonefluidphaseexists. P3'smaximumvelocityin the frequencyrangeof interestis lessthan 1 m/swhichmakesit verydifficultto observe,if not where P•pisthecapillary pressure (N/m2), S2isthewater impossible.Figure 5 illustratesthe phasevelocityof the saturation, St2is the irreducible watersaturation, Sin2 is the rotational wave as a function of saturation. We note that the upperlimit of water saturationin a two-phasemedium,m= ldrop in the phasevelocityis not observedin the rotational I/n, and •xandn arematerialparameters.Parametersof (31) wave.The phasevelocityof S showslineardependence on arechosen asa=0.025,n=10,andSt2=0.0. We usetherelative watersaturation. Thejumpsin P1 andP2 canbeexplained by permeabilitycurvesof W.ycœoffand Botset[1936]shownin theconsiderable changes in compressibility of porefluidswith Figure 1. a highlycompressible phase,that is, air. Figures2-5 illustrate the effect of water saturationon the Figures6-9 illustratethefrequency dependence of phase phasevelocities at four differentfrequencies. From thispoint velocities of bodywaves.Thedropin thephasevelocityof P1 on we will representthe compressional wavesby "P" and can alsobe seenin Figure 6. ComparingFigures6-8, we rotationalwave by "S." Sincethereare threecompressional observe thatthephasevelocities of P2 andP3 approach zero waves,we will numberthem accordingto the magnitudeof whenthe frequencyapproacheszero. Thus we canconclude their phasevelocity,P1 beingthe fastest.We observea sudden that P1 is a waveanalogous to the compressional wavein drop in the phasevelocityof the first compressional wave elastic solids. Figure8shows thatthemaximum phase velocity becauseof highcompressibility of air (Figure2). The reduc- of P3 islessthan6 m/s.Therefore, P1 andP2 correspond to dP=•dS•• (9).VanGenuchten proposed that 80- 1.O P2 0.8 o.s ........ .... - 2000 Hz - ..•3 0.4.-0.2 500 Hz 1000 Hz 15OO Hz .............. 7.:.:.:..-.:'.::.::.. .. - ø'øo. % o., Wciter o.'a o.a 1. Figure 1. Relativepermeabilitycurves[after Wyakoffand Bot•t, 1936]. 0 0, o.'• saturation o.• Water o.'• o.', 1.'o saturation Figaro3. Effectof watersaturation onthephase velocityof P2. TU]qCAY AND CORAPCIOGLU: WAVE PROPAGATION 2300 IN POROUS MEDIA 25,153 - P1 500 Hz 2100 - ........ ........ •000 Hz 500 HZ 2000 S,=.1.0 S,=.0.8 .... HZ --- S,--0.3 ,•, 1900E ._ • 1700 - (:3 • 1500 - 1 ,.300 - o 0.12 o.o o.4 Water 0.18 0.6 1,0 1 lOO •'o saturation , ;•o ';'•'oo Frequency .................. 1 oooo 1 ooooo (Hz) Figure 4. Effect of water saturationon the phase velocityof P3. Figure 6. Frequencydependence of thephasevelocityof P1. the fast and slow wavesin Biot's theory. Figure 9 demonstratesthe frequencydependenceof the rotational wave. We observethat as the water saturationincreases, the frequency dependence of phasevelocityof S becomesmore significant. than that of water which explainswhy P2 is much more attenuatedin air-saturatedsamplesthan in water-saturated Figure 10 showsthat the attenuation coefficientof P1 starts from zero and gradually increasesas the water saturation increases.We observea suddendrop when the water saturation approachesunity. We shouldnote that viscosityof air is much smallerthan that of water which explainswhy the first compressionalwave is so little attenuatedin air-saturated specimens. In caseof a moreviscousfluid thanair, oneshould expecta curvestartingfrom a nonzeroattenuationcoefficient. we can conclude that P1 is a wave, whereas P2 and P3 are ones[Nagy ct M., 1990;Nagy, 1993].The attenuation coeffi- cientof P3isillustratedin Figure12.Ascanbeseenin Figure Figures 10-13 show the effect of water saturation on the 12, the attenuationcoefficientbecomesvery largewhenthe attenuationcoefficient,that is, the imaginarypart of wave watersaturationapproaches zeroor unity,thatis,singlepore number. We should note that the attenuation coefficient fluid.Furthermore, theattenuation coefficient ofP3isalways calculatedis the part due to the contributionof the relative muchlargerthanthatof P1 andP2. Considering lowvelocity movementbetweensolid and fluid phases(equations(11)- andhighattenuationof P3, we believethat an experimental of P3 is not possible.From the abovediscussion, (12)). Inelasticenergylossesare not taken into consideration. observation The attenuation coefficient of P2 as a function of water saturationisillustratedin Figure 11.Again,we observea peak associated with a dissipativetype of behavior.However, it shouldbe notedthat uponreflectionand transmissionof P1 at an interface,significantamountsof waveenergycouldbe partitionedinto P3 and dissipatedinto the mediumunder idealcircumstances. This wouldalter the amplitudes of the observable P1 waves and would not be accounted for in solid elasticityor evenin Biot'sporoelasticity theory. We alsoobserve thatthepresence of air reduces thephase velocity and increasesthe attenuation coefficientof P2 which in theattenuationcoefficientaroundS2=0.8.We shouldnote makesan experimentalobservationof P2 alsodifficult. Since experiment,it iswell knownthat that the attenuation of the secondcompressionalwave is Plon•'s [1980]first successful specimens haveto be vacuum- impregnated determinedby thekinematicviscosity,that is, theviscosity-to water-saturated densityratio. The kinematic viscosityof air is much higher to eliminate the remanent air saturation before the slow compressional waveP2appears. Similarly,air-saturated speci1 ooo 800 900 - ........ .... 500 1000 Hz Hz 1500 2000 Hz Hz - 700- 600 800- ........ S,--1.0 S.-0.8 .... S.-0.5 / • •'500 400 700 600 300 - 200 100 500 0.( o.'• o.'• Water o.'• [ 0.8 saturation Figure 5. Effect of water saturationon the phase velocity of S. 1.O 0 ' , ........ •r,•r•---,-'•", ,'•,",,"' I I •o • oo I 1 ooo Frequency I • oooo I • ooooo i (Hz) Figure 7. Frequency dependence of thephasevelocityof P2. 25,154 TUNCAY AND CORAPCIOGLU: WAVE PROPAGATION IN POROUS MEDIA 0.04 P3 P1 //ø ........ $.i0.8 .... S mO.5 s:-o.3 ::•,.<: ..... •, 0.03 /? 500 1000 1500 2000 ........ .... - - - Hz Hz Hz Hz / d ! • 0.02 - // ! ! /, .c:2- / Q_ .•, / • 0.01 - ................... ' ' ' ,,,,11 , , ' ,,,,,I • ooo •requency , 1 oooo , ' ,,1•11 i -0.2c....•,._-_-.F.::::.".:.:.-'.."; ................. ----"'-'""-'--0.4 0.6 0.•l 1.0 I , • ooooo I Water (Hz) Figure 8. Frequencydependence of the phasevelocityof P3. Figure 10. Effect of water saturation on the attenuation coefficient menshaveto becompletelydriedto removethe residualwater saturationbeforeP2 appears[Nagy ½tM., 1990].Thereforeas notedearlier,it seemsto be highlyprobablethat any degreeof partial saturation eliminates P2. Figure 13 illustrates the attenuationcoefficientof the rotational wave. Although the saturation of P 1. thesamples. Sinceweassume isotropyandhomogeneity in the calculations,someof the discrepancies betweenour model results and the experimental data can be associatedwith Domenico's conclusions. Anothercommentwasmadeby ¾/n ½tal [1992]who experimentally examinedthe effectof open t•endissimilartothatofP1,wedonotobserve a peakinthe and dosed boundaries on the attenuation coefficient of P1. attenuationcoefficient.ComparingFigures10and 13,we find They found that the attenuationcoefficientdependson saturationhistoryaswell asdegreeof saturationandboundary flow conditions.¾/n ½tM. [1992]observeda signif'leant differencein the attenuationof P1 during drainageand imbibition.Mucl•hy [1982]providedexperimentaldata on low-frequencywave attenuationsand phase velocitiesin Massilionsandstone saturatedbyair andwater.The material that attenuation coefficients of P1 and S are in the same order of magnitude. ComparisonWith Experimental Data Although there are severalexperimentalstudiesin the literature on the phasevelocitiesand attenuationsof body wavesin elasticporousmediasaturatedby two fluids,mostof themarelimitedto high-frequency wavepropagation.Among the onesdealingwith high-frequencywave propagation,one can note Domenico [1974, 1976], Gregory [1976], Elliot and Wiley [1975]. Domenico [1974, 1976] who investigatedthe effectsof water saturationon reflection,refraction,andphase velocityof bodywaves,pointedout the difficultiesin conducting experimentswith multiphase fluids. Dom½•co [1974, 1976]demonstratedthat the drainageprocessusedin many laboratorystudiesresultsin heterogeneous gasdistributionin 900 properties of Massilion sandstoneare shown in Table 1. Parameters of (31)arechosen as•=0.025,n=10,andSa=0.0. We usetherelativepermeabilitycurvesof WyckotTa•dBotsct [1936]shownin Figure 1. Figure 14 showsvery favorablecomparisons of model calculatedand experimentalphasevelocitiesof P1 and S. As predicted byourmodel,experimental datashowajumpin the phasevelocity of P1 close to full water saturation. After a significant reduction,thephasevelocityincreases asthewater saturationdecreases. The phasevelocityof S alsoincreases as the water saturation decreases. I - // Sw--1.0 ,•,1200 ß'" | ........ .... S.-0.3 .... m 850 - 500 Hz 1500 Hz // --- 2000Hz / "' • •oo / / \\ //, "'-'" ',,\\ .... "" . .. ,,' /.'/' m I •, 800- • .......... o 750 10000 Frequency o.o o.'• (Hz) Figure 9. Frequencydependence of the phasevelocityof S. o.g Water 100000 o.'• o.'• 1.o saturation Figure 11. Effect of water saturation on the attenuation coefficient of P2. TUNCAY 100000 AND CORAPCIOGLU: WAVE PROPAGATION - IN POROUS MEDIA 25,155 2200- 200080000 Experimental - 18OO Ii .... Li,,, ' 60000- 500 Hz Hz 1000 ........ •• •, 15oo •z --- 2000 .z Numerical - Data Results ..• ,, .•.1600- [li •,, -•,1400 I•rst compressional wave (571--647 Hz) •. 1200 - 40000- •x 20000- 0 0.0 z I 0/2 I 0.4 Water 0.6 0.'• .•o 1000 800 - 600 - 400 1.'0 0.0 Rotational : - wave - i o.'• 0.4 Water saturation . r --. . (365--3B5 - v Hz) - = : ,..... i o.'• 0.8 . _ _ •.'o saturation Figure 12. Effect of water saturationon the attenuation Figure 14. Comparisonof predictedandexperimentalphase coefficient velocities of P1 and S. of P3. As mentionedpreviously,ourmodelconsiders theattenua- of water saturation for different values of permeability. tion due to the relative movementof solid and fluid phases. Althoughboth experimentaland theoreticalresultsexhibit a Inelastic losses or contact relaxation are not taken into consideration.Thuswe canonly partially compareour results for the attenuation coefficients. Y/n ½taZ [1992] observedan intrinsicattenuationat moderatewater saturations,probably due to the moist rock frame which tends to behave like a peakin theattenuation,thematchisnot favorable.As seenin Figure 16, attenuationof P1 at 600 Hz increasesfor larger permeabilities.Althoughpermeabilityaffectsthe magnitude of attenuation, the location of the peak of 1/Q does not change. We should note that although the experimental and standard inelastic solid. We inspect a similar trend of Murphy's[1982]experimentalresults.Thispart of theattenu- theoreticalpeaksin the attenuationof P 1 do not quitematch, ation wasanalyzedby Winldcr and Nttr [1982],and Murphy Y/n ½ta/.[1992]concludedthat the peak is stronglydependent ½ta/.[1986].As suggested by Y/n ½ta/.[1992],we subtractthis on the history of saturation. Their experimental results part of the attenuationto obtain the attenuationdue to the showedthat attenuation peak for imbibition shiftstoward a higherwater saturation around 97%. relativemovementof solid and fluid phases. In Figures 15-16 we use the inversequality factor, I/Q, instead of the attenuation coefficient. Quality factor is a Conclusions measureof the energylost during one period of oscillation. The inversequality factor is calculatedfrom We analyzed the characteristics of body waves in poroelastic porous media saturated by two immiscible 1 2c•i (32) Newtonian fluids. We demonstrated the existence of an additional compressionalwave arising becauseof a second Attenuation of S at a frequencyof 500 Hz can be seenin fluid phasein the pores.The first and secondcompressional Figure 15.The match is reasonablefor water saturationsless wavesare analogousto the fast and slowcompressionalwaves than0.90. Figure 16showsthe attenuationof P1 asa function in Biot's theory.We showedthat the third compressionalwave 20 ..... Experimental Numerical Data Results 16O.O& -- ........ • o.o3 - e- 0.02 - 500 Hz 1000 Hz 1500 2000 Hz Hz , 12- ! o , 8! o ,, .-- ß ,, ,, , . •ß O.O1 - --:-::::3--:':::'::':::"'i ............... ,.o 0.00 ............. 0.0 Water o o,o of S. ' o.½ --I o.I• o.,• •o saturation Comparison of predicted and experimental attenuationof S (500 Hz). Figure 13. Effect of water saturationon the attenuation Figure 15. coefficient I ' 0.2 Water saturation 25,156 TUNCAY AND CORAPCIOGLU: WAVE PROPAGATION 4O IN POROUS MEDIA In the microscale,the grainswill be assumedto be linearly elastic and the fluids P1 ..... 30- Experiment• [•ato (571--647 K=9 0 10-• m 10 m Hz) K=5.0 K=2.0 are Newtonian. The coefficients of macroscopicconstitutiverelationswill be expressed in terms of measurablequantities. Momentum transferterms will be formulatedin terms of intrinsic and relative permeabilities assumingthe validity of Darcy's law. 10-•m= Microscopic Constitutive Relations, Mass and Momentum Balance Equations /, In this studythe compressibleporousmedium consistsof compressiblesolid grains and two immiscibleviscouscompressiblefluids.Then the constitutiverelationsare givenby o 10- ....;--'•.. ................... -;-., . _•_• .......... o 0.2 o.o ;ø'1 Woter xs- KsV'u sI+ Os u•+ (Vu)r i 0.4- 0.6 0.•8 soturotion Figure 16. Effect of the intrinsicpermeabilityon attenuation of P 1 (600 Hz). is associatedwith the pressuredifference between the fluid phasesand dependent on the slope of capillary pressuresaturation relation. We numerically examined the effect of water saturation and frequency on the phasevelocitiesand attenuation coefficientsof body waves for Massilion sandstonesaturatedby air and water phases.Our numericalresults showedthat presenceof a gasphasesignificantlyreducesthe phasevelocitiesof the first and secondcompressionalwaves. The third compressionalwave has the lowest phasevelocity andhighestattenuationcoefficientwhichmakeit verydifficult to observe,if not impossible.We also examinedthe effect of water saturation V'u• 1 on the attenuation coefficients. whereus,xs,Ks, Gs,andI are the displacement, incremental stresstensor,bulk modulus,shearmodulusof the solidphase, andtheunit tensor,respectively.The superscript T denotesthe transposeof a tensor.We assumethat both fluid phasesare Newtonian with constitutive relations 37' Vi ti---Pi I+Di[•7•. +•7v).r --2• I] i=1,2 (A2) wherevi, xi, Pi, and Di are the velocity,incrementalstress tensor,incrementalporefluid pressure,andshearviscosityof fluid phasei, respectively. In (A2) thebulk viscosityof fluids isassumed to benegligible.The stateequationsof fluidphases are assumed to be in the form of 1•-dP/ 1dPi The attenua- Kidt i=1,2 (A3) @idt tion coefficientof the first compressionalwave is very small when the medium is saturatedby air only. It increasesas the water saturationincreasesand exhibits a peak at a very high whereKi., @i,andPi arethebulk modulus,massdensity,and pressureof phasei, respectively.The massbalanceequations water of fluid phasesare expressedas saturation. The attenuation of the rotational wave is similar exceptfor the presenceof a peak. We comparedthe resultswith the experimental data available in the literature. Although the phasevelocity of the first compressionaland rotational wavesare well predictedby the theory, there is a discrepancybetweenthe experimentaland theoreticalvalues of attenuationcoefficients.However, it waspreviouslyshown that the drainage processused in many laboratory studies results in heterogeneousgas distribution in the samples [Domenico, 1974, 1976]. Since we assume isotropy and homogeneityin the calculations,some of the discrepancies betweenour model results and the experimentaldata can be associatedwith Domenico's conclusions.Yin ½t al [1992] showedthat the peak in the attenuation coefficient of P1 is stronglydependenton the history of saturation.Their experimentalresultsdemonstratedthat attenuationpeakfor imbibition shifts toward a higher water saturation around 97%. Thesecommentsmay explain the discrepanciesbetweenthe modelresultsandexperimentaldata for theattenuationcoeffidents. Appendix' Derivation of Governing Equations 1d@•=_V.•. i-1,2 @idt where ui is the displacementof the fluid phasei from a referenceposition, that is, incremental displacement.We continuewith the momentumbalanceequationin terms of incremental fluids. The macroscale mass and momentum balanceequationsand constitutiverelationswill be obtained by volumeaveragingthe correspondingmicroscaleequations. stresses and velocities as aS' V•cj-Os• j-s,1,2 (AS) We canrewrite(A5) by usingthemassbalanceequations(A4) as ) j-s,1,2 (A6) V"Cj - O(OY5')+V-(oy5.5. at Macroscopic Constitutive Relations Our next stepis to obtain macroscopicconstitutiverelations by averagingthe microscopicrelations over a representativeelementaryvolume [Bear, 1972].Volume averaging of (A1) yields In this appendixwe apply the volumeaveragingtechnique to obtain the governingequationsof wave propagationin a linearly elasticporousmedium saturatedby two immiscible Newtonian (A4) , a: sdV-K, '(ets• ) +l • . u/ndAI + (A?) r- ,+ 4 /-,,2 TUNCAY AND CORAPCIOGLU: WAVE PROPAGATION where IN POROUS MEDIA 25,157 To explore the constitutive relations associatedwith the volume changes, westartbyintroducing •j - u,-• -- , 1 -11jPj•tr(11j•.) - Kj(11/V'•.+A11j) j-s,1,2 (A17) is a second-order tensor with zero trace. Since there is no mass exchangebetweenthe phases,the velocityof the interfaceis equal to the velocity of a point at the interface, that is, material surface.By employingthe volume averagingrules, the integralin (A7) can be expressedas i- 1, 2 Equation(A17) doesnotcontainanyrotationaldeformations. For an elastic porous medium saturatedby a singlefluid, Pride et al. [1992] showedthat (Ps -P) V.us - -11s• (A9) Pr (A18) whereKrrisdefinedasthe"frame"or "drained" bulkmodulus. where the superscript( 0 ) refersto the referenceconfiguration. Since the displacementsare assumedto be small, by Weassume thatin caseof twofluidsP'-r isgivenby definition •j.Vaj ~ 0. Thenvolume averaged constitutive relationsfor the solid phasecan be expressedas [ Then, we can rewrite Eq. (A18) as 4 i-l, 2 +(1-•)P:) V'u• - -11•(P•-$,P,-(1-•)P2) - ($,P• (A20) +O,11,V•+11•7•) r- 11,V'• I+ where•s is the intrinsicaveragedincrementalstressof the We can express the change in volume fraction of the nonwettingphasefrom (A18) as solid phase. Similarly, the volume averaged constitutivc relationsfor fluid phasesare = = 0 (A21) %•i' Ki (11iV'ui+A ai) ! 2 and the changein volumefractionof the wettingphaseas . 0 A112 A((1-•)(1-11)) = (1-•)(1-11)-(1 _•o)(1-11s ) 4..v,t 2.ar)d4 (A12) (A22) - Under the small deformationsassumption,the interfacesof Sincewe havealreadyassumed that AS• andAasaresmall, the phasesare not allowedto experiencelargedeformations. Thenby usingEqs.(AS) and(A12), andassuming 0u]& >> VrVU i, we canwrite OK;). J#' 0t theproduct ofthese terms canbeneglected. Equations (A16), (Al7), and (A20) can be rewritten in the matrix form, and solutions for theunknowns, A11 s, AS•,]Ys,•, and•2 are (A13) obtainedby invertingthe coefficientmatrix as A11s - b,V'•+ b=V.u•+ baV'• (A23) We must note that here is a jump in the stressesof the immiscible fluids at the fluid-fluid interface because of the presenceof interfacialtensionand curvatureof the interface. Assumingsmoothpressurevariationswithin the averaging -11•P•- allU.u•+a12U. u!+al•7.u2 volume, we can write •* - •2'"V•w(•) (A14) -(1-11s)(1-•)•2 ' a,,V'•+ anV.u'•+ aa3V.• 2 (A27) alsoknown as capillarypressureis assumedto be a function ofSk(saturation ofthenonwetting phase) only.Fromnowon fluid phase1 will be consideredas the nonwettingphaseand fluidphase2 asthewettingphase.S• is relatedto thevolume fractionsby $,.- 1 i- 1,2 (A15) Then Si+S2=1. Notingthatfluidpressures weworkwithare (A25) (A26) whereP• andP2 arethcintrinsic avcraged pressures. Pcap, 11i (A24) AS, - where ai•,bi,andci areconstants expressed interms ofmaterial parameters(see(4)-(10)). Our next step is the evaluation of the solid matrix's shear modulusGw We assume thatall shearresistance of theporous mediumis providedby the solidmatrix only. This uncouples theshear deformation of all phases, thatis,Kij=Jij=0. If an externalshearstress•e isappliedto thematerial,wecanwrite --D --D --D -- the incrementalpressures, as a first-orderapproximationwe can write • - •22 ' dPex'AS, (A16) where •jDisthedeviatoric stress ofphase j. Inother words, providedthat changein saturation,AS• is small. the fluidsare viscousbut the mechanicalshearresponseof the 25,158 TUNCAY AND CORAPCIOGLU: WAVE porousmedium is provided by the solid matrix only. Fluid viscosities will be taken into consideration later when we discussthe momentumtransfersbetweenthe phases.We can rewrite the constitutiverelations by introducing (A28) into (A25) and definitionsof incrementalstresstensorof phases1 and 2 into (A26) and (A27). PROPAGATION IN POROUS MEDIA Substitutionof the constitutiverelations(equations(A29)(A31)) andtheinteractionterms(equations(A35) and(A36)) in the averagedmomentumbalanceequations(A34) yield(1)(3). Equations(1)-(3) are the governingequationsfor lowfrequencywavepropagationin a poroelasficmediumsaturat- edbytwoimmiseible fluidswithunknowns: u,, u•, andu-2. References + (A30) ('•1)'S1(1•s)•l'(•21V"•S +•22V'•11 +•23V'V3)I (A31) Bear,J., Dynamicsoœtloids in porousmedia,AmericanElsevier,New York, 1972. Berryman,J.G., Confu'raation of Biot'stheory,Appl Phys.Lett., 37, 382-384, 1980. Biot, M.A., Theory of propagationof elasticwave in a fluid saturated poroussolid,I, Low frequencyrange,J Acoust.$oc. Am., 2•, 168-178, 1956a. Biot, M.A., Theoryof propagationelasticwavesin a fluid saturated poroussolid,II, Higherfrequencyrange,J. Acoust.Soc.Am., 2& 169-191, 1956b. Macroscopic Momentum Balance Equations Brutsaert,W., The propagationof elasticwavesin unconsolidated unsaturatedgranularmediums,J. Cmophys.Res., 69, 243-257, Employing the volume averaging theorems,the volume averageof (A6) is obtainedas •0i5> •v. c<oiS. vi>)+--•! O•5. C •-u) .•idA Ot ,, 1964. Brutsaert,W., and J.N. Luthin, The velocityof soundin soilsnearthe surfaceasa functionot'themoisturecontent,J. Cmophys. Res.,69, 643-652, 1964. Chattopadhyay, A., andR.K. De, Lovewavetypesin a porouslayer (A32) with irregularinterface,I•t. J. E•g ScZ,21, 1295-1303,1983. Corapcioglu, M.Y., andK. Tuncay,Propagation of wavesin porous media, in Advatwcsi• PocousMedi•, 3, edited by M.Y. Corapcioglu,361-440,Elsevier,Amsterdam,1996. Deresicwiez,H., The effectof boundarieson wave propagationin a liquid-filledporoussolid,II, Love wavesin a porouslayer, The •te•al on the left-hand side of (A32) vanishess• the Sei•aol. Soc.Am., 51, 51-59, 1961. velocityof the •tefface is •ual to the velocityof a po•t at Deresicwiez, H., The effectof boundarieson wavepropagationin a •e •tefface, that is, no mms exchangebetweenthe phases. liquid-filledporoussolid,IV, Surfacewavesin a half-space, We assume •at the se•nd te• on the left-hand side can be S½ismol. Soc.Am., $• 627-638,1962. Deresicwiez, H., The effectof boundarieson wavepropagationin a neglectedunder •e small derogation assumption.Avenge liquid-filled poroussolid,V!, Lovewavesin a doublesurface layer, velodtiesanddispla•ments for all phasesa• •lat• by Bu•. $eismol $oc. Am., 54, 417-423, 1964 Deresiewicz,H., The effectof boundarieson wave propagationin a liquid-filledporoussolid,IX, Love wavesin a porousinterrod .5..aaA j,g3s,1,2 stratum, Bull. Seim•ol. $o½.Am., 55, 919-923, 1965. Domenico, S.N., Effectsofwater saturation of sandreservoirsencased S•ce we a• •terest• • the 1ow-f•quencywave propagain shales,Geophy•i½•29, 759-769, 1974. tion, that is, characteristicleng• of the micros•pic •ale is Domenico,S.N., Effectof brine-gasmixtureon velocityin an unconsolidatedsandreservoir,Geophyd½• 41, 882-894, 1976. •aller than the wavelength,the displa•ents ap•afing • Elliott, S.E., and B.F. Wiley, Compressionalvelocitiesof partially •e •tegr•d • (A33) •n be assum• to be •nstant. Emsaturated,unconsolidatedmuds, Geophy•i½•40, 949-954, 1975. plo•ent of •e ave•g•g •les aM substitutionof (A33) • Cmrg,S.K., and A.H. Nayœeh,Compressionalwave propagationin (A32)• l•ea•ation of <0j> • •e •sult•g •uations yield liquidand/orgassaturatedelasticporousmedia,]. Appl. Phys.,60, 3045-3055, 1986. Gregory,A.R., Fluid saturationeffectson dynamicelasticproperties of sedimen•ry rocks, GeophyMc441, 895-921, 1976. Jones,J.P., Rayleigh wavesin a porous, elastic,saturatedsolid, Aeou•t. $o½.Am., 33, 959-962, 1961. Miksis,M.,J., Effectsof con•ct line movementon the dissipationof wavesin partiallysaturatedrocks,J Geophy•.Re•., 93, 6624-6634, O)•-•'(xj)+•fxj'ajdA j• i-s, 1,2(A34) Momentum 1988. Transfer Mochizuld,S., Attenuationin partially saturatedrocks,]. Creophy•. Re•., 87, 8598-8604, 1982. Due to the complexity of the pore-scaleproblem, we approximatetheinteractiontermsby assumingthe validityof Darey's law. Sincethe theoryis for low-frequencywaves,the assumptionof laminar flow is a reasonableone.Then, Murphy, W.F., Effectsof partial water saturationon attenuationin Massilionsandstone and Vycor porousglass,J. A½ou•t.$oc.Am., 71, 1458-1468, 1982. Murphy, W.F., Acousticmeasures of partialgassaturationin tight sandstones, ]. Geophy•.Re•., 89, 11549-11559,1984. Murphy, W.F., K.W. Winlder, and R.L. Kleinberg,Acousticrelaxation in sedimendaryrocks:Dependenceon grain con•cts and fluid saturation,Geophy•ic4$1, 757-766,1986. Nagy,P. B., L. Adler,andP.B.Bonner,Slowwavepropagationin airfilled porousmaterialsand natural rocks,Appl. Phys.Lett., (l-a$)•g•!(V,_ V) (A35) 2504-2509, 1990. (A36)Nagy, P. B., Slowwavepropagationin air-filledpermeablesolids, A½ouel.$o½.Am., 93, 3224-3234, 1993. where K is the intrinsic permeability of the porousmedium andka is therelativepermeabilityof phasei. Plona, T.J., Observationof a secondbulk compressional wave in a porousmedium at ultrasonicfrequencies,AppI. Phys. Lett., 259-261, 1980. TUNCAY AND CORAPCIOGLU: WAVE PROPAGATION Pride,S.R., A.F. Gangi, and F.D. Morgan, Derivingthe equationsof motion for isotropicmedia, ]. Acoust. Soc. Am., 88, 3278-3290, 1992. Santos, J.E., J.M. Corbero, and J. Douglas, Static and dynamic behaviorof a porous solid, ]. Acoust. Soc. Am., 87, 1428-1438, 1990. Tajuddin,M., Rayleighwavesin a poroelastichalf-space, So½.Am., 7•,, 682-684, 1984. Tuncay, K., Wave propagation in singl• and double-porosity deformableporousmedia saturatedby multiphasefluids, Ph.D. Dissertation,Tex. A&M Univ., College Station, 1995. Van Gcnuchten,M. T., A closedform equation for predictingthe hydraulicconductivityof unsaturated soils.SoilS•i. So½.Am. ], 44, 892-898, 1980. IN POROUS MEDIA 25,159 Winkler, K.W., and A. Nur, Seismicattenuation:Effectof porefluids and frictionalsliding,Geophysics,47, 1-15, 1982. Wyckoff, R.D., and H.G. Botset, The flow of gas-liquidmixture throughunconsolidatedsands,Physics,7, 325-345, 1936. Yin, C.S., M.I. Batzle, and B.J. Smith, Effectsof partial liquid/gas saturation on extensionalwave attenuation in berea sadstone, Geopl•ys.R•. L•tt., lP, 1399-1402,1992. M. Yavuz Corapcioglu,Departmentof Civil Engineering, Texas A&M University,CollegeStation,TX 77843-3136. K. Tuncay,Facultyof Engineering, Izmir Instituteof Technology, Gaziosmanpasa Bulvari,No.16, Cankaya,Izmir, Turkey. (ReceivedMarch 9, 1995;revisedJuly 1, 1996; accccptedJuly 11, 1996.)
© Copyright 2025 Paperzz