Name____________________________________ Date___________________ Period_______ Lessons 6.1 – 6.3 Lesson 6.1 Review Evaluating Algebraic Expressions Define a variable, write an algebraic expression, and then evaluate the expression for the given values. In 1963, the entrance fee for ages 12-17 years old to Disneyland was $1.20. You needed tickets to ride the rides, and the rides were rated by tickets: A – E. Examples of the “A ticket” rides were the Sleeping Beauty Castle or the Main Street cars & carriages. The “B ticket” rides included Dumbo and the Mad Tea Party. The “C ticket” rides included Peter Pan and the Autopia. “D tickets” were for rides like Storybook Land or the Jungle River Cruise. An example of the “E ticket” ride is the Matterhorn Bobsleds. Books of various combinations of these tickets could be purchased, or you could purchase one ticket at a time at booths in the park. One “E ticket” for 1217 years old was $.50. Answer the questions using the 1963 prices given. 1. Let’s say you want to go into Disneyland and then only purchase E tickets (the roller coasters and “big” rides). Define a variable:___________________________________________________ Write an algebraic expression:_________________________________________ How much would you pay that day if you ride: a. 5 “E ticket” rides? b. 8 “E ticket” rides? c. 12 “E ticket” rides? 2. Let’s say your younger sibling is only 7 years old. His/her entrance is only $.60, and he/she is only going to ride the Fantasyland rides that are “C tickets” that day ($.30 each). Define a variable:___________________________________________________ Write an algebraic expression:_________________________________________ How much would it cost for him/her that day if he/she rides: a. 6 “C ticket” rides? b. 9 “C ticket” rides? c. 14 “C ticket” rides? 3. Your mom just had a baby, and isn’t going to take the baby on anything except maybe the cars up and down Main Street and the other “easy” stuff. It’s $1.60 for her to get in, and $.10 each for the “A ticket” rides. Define a variable:___________________________________________________ Write an algebraic expression:_________________________________________ How much would it cost for her that day if she rides: 3 “A ticket” rides? a. b. 5 “A ticket” rides? c. 8 “A ticket” rides? Evaluate each algebraic expression for the values given. 4. 21 + (−5𝑔) 5. 4ℎ 6. −2𝑏+10 2 a. for 𝑔 = 3 a. for ℎ = 5 b. for 𝑔 = 23 b. for ℎ = −2 b. for 𝑏 = −2 c. for 𝑔 = −2 c. for ℎ = −15 c. for 𝑏 = 4 a. for 𝑏 = 2 Complete each table. 7. 𝒂 𝟐𝒂 + 𝟏𝟓 8. 𝒄 −5 2 −3 −5 0 6 4 1 (𝒄𝟐 − 𝟏𝟐) 9. 𝒅 + 𝟓𝒅 𝟐 𝒅 10. 𝒎 4 2 8 −5 −12 6 −1 1 Lesson 6.3 −(𝟑𝒎 − 𝟏𝟓) Simplify by Combining Like Terms. Simplify each expression by combining like terms. If the expression is already simplified, state how you know. 11. 8 + 5ℎ + 2 12. 5𝑝 – 7𝑝 + 13 13. 5𝑐 + 2𝑧 14. 4𝑔 + 5 – 2ℎ + 7ℎ 15. – 9𝑔 + 4𝑔 16. – 𝑥𝑦 + 8𝑥𝑦 17. 𝑚 + 6𝑚 + 1 18. 5𝑣 + 𝑤 + 𝑣 – 4𝑤 19. 3𝑎 + 2𝑏 + 6𝑎 20. 12𝑥 2 + 5𝑥 21. 4𝑚2 – 7𝑚2 + 𝑚 – 12𝑚 22. 11𝑛2 – 15𝑛2 + 3𝑛 23. 2𝑥 – 3𝑦 + 5𝑥 + 11 + 𝑦 – 4 Lesson 6.2 24. 7𝑔 + 2 – 3ℎ – 4𝑔 + 8 + 7ℎ Distributive Property Use the Distributive Property to Simplify 25. 5(𝑥 + 1) 26. 3(𝑦 + 10) 27. 5(𝑛 – 3) (𝑧 – 6)4 29. 31. 5𝑤(3𝑥 – 4𝑦) 32. 3(2𝑣 – 7𝑤) 33. (15𝑐 + 20)3𝑐 35. 2ℎ(5 + 3𝑔ℎ) 36. 3𝑝(5𝑝 + 2𝑝2 ) 34. 5𝑚(𝑚 + 2𝑛) 5(𝑎 – 6) 30. 10(2𝑔 + 4ℎ) 28. Simplify each expression using the Distributive Property and Combining Like Terms 37. 7(𝑤 + 3) 38. 5𝑥 + 2(𝑦 + 𝑥) 39. 4(𝑟 + 3𝑡) – 2𝑟 40. (𝑔 + 4)ℎ + 3ℎ 41. 3𝑣𝑤 + 5(𝑣𝑤 – 𝑣) 42. 2(𝑎2 + 4𝑎𝑏) – 𝑎𝑏 Lesson 6.3 Reverse Distribution – Factoring Algebraic Expressions Rewrite each expression by factoring out the greatest common factor. 43. 16𝑚 + 24 44. 18𝑛 – 81 45. – 2𝑝 – 34 46. 30 – 6𝑧 47. 12𝑥 – 6 48. – 35𝑚2 + 14𝑚 49. 8ℎ – 20ℎ2 50. 18𝑔 + 18 51. 5𝑏 2 – 15𝑎𝑏 52. 24𝑚𝑛 + 30𝑚 53. 11𝑐 2 – 33𝑐𝑑 + 22𝑐 54. 5 – 55𝑎 55. 12𝑧 3 + 16𝑧 2 – 8𝑧 56. 6𝑝4 + 12𝑝3 – 3𝑝2 57. 10𝑤 5 + 15𝑤 3 – 5𝑤 2 + 20𝑤 Lesson 6.3 Evaluating Algebraic Expressions Evaluate each expression for the given value. Choose whether or not to factor or combine like terms before evaluating. 58. – 24𝑎 + 14; 𝑓𝑜𝑟 𝑎 = 1 59. 16 – 14𝑏; 3 1 60. 4𝑓 2 – 16𝑓; 𝑓𝑜𝑟 𝑓 = – 3 2 𝑓𝑜𝑟 𝑏 = 0.5 61. 18𝑔 + 27𝑔3 ; 𝑓𝑜𝑟 𝑔 = 62. (2ℎ – 5) + (4ℎ + 3); 𝑓𝑜𝑟 ℎ = 7 64. 18𝑚 – 36𝑚 + 4; 𝑓𝑜𝑟 𝑚 = − 9 1 2 2 3 63. (9 + 4𝑘) + (3 – 5𝑘); 𝑓𝑜𝑟 𝑘 = −2 65. 4.5𝑛 + 2 + (−8.5𝑛) + 1; 𝑓𝑜𝑟 𝑛 = 7 𝟏 Evaluate each algebraic expression for 𝒙 = 𝟑, – 𝟐, 𝟎. 𝟐𝟓, and 𝟐 𝟑 66. – 9𝑥 67. 12𝑥 + 10 68. 10 – 3𝑥
© Copyright 2026 Paperzz