11/16/2012 Microbial communities often exhibit predictable patterns in composition and diversity across environmental gradients The promise (and peril) of using comparative shotgun metagenomics to understand belowground communities Noah Fierer Assoc. Professor Dept. of Ecology & Evolutionary Biology Univ. of Colorado at Boulder Soil pH Soil pH Lauber et al. 2009. Appl. Environ. Micro. Alpha Diversity Mantel r (soil pH) = 0.81 Ladau et al. In Prep. Changes in microbial community structure meta-‘omics’ Griffiths et al. 2010. Environ. Micro. Changes in soil processes Can we use soil metagenomics to improve our understanding of microbial community function? map of 16 sites with legend, include photos / 1 11/16/2012 abundant cyanobacteria Shotgun metagenomic sequencing 2400 4-11 million reads per sample (Illumina HiSeq) Tropical Forest Temperate Coniferous Forest Temperate Deciduous Forest Boreal Forest Prairie Arctic Tundra Hot Desert Cold Desert Metagenomic richness 2200 ≈ 20% of reads could be annotated data rarefied to 688,000 annotated reads/sample 2000 1800 1600 1400 ≈ 85% of LSU or SSU rRNA genes assigned to bacteria r2 = 0.49 1200 200 300 400 500 600 700 16S rRNA phylogenetic diversity (PD) 16S rRNA gene amplicon sequencing 118,000 reads per sample (Illumina HiSeq) Fierer et al. In Review. 40 16S rRNA genes 20 Tropical Forest PCo2 (15%) Temperate Coniferous Forest Temperate Deciduous Forest 0 Boreal Forest Prairie Arctic Tundra -20 Hot Desert Cold Desert -40 β diversity – 16S rRNA amplicon results -60 -60 β diversity – shotgun metagenomes -40 -20 0 20 40 60 PCo1 (26%) 0.4 1.5 metagenomes 1.0 0.2 Tropical Forest Tropical Forest 0.5 Temperate Deciduous Forest Boreal Forest PCo2 (11%) PCo2 (14%) Temperate Coniferous Forest 0.0 Prairie Arctic Tundra Hot Desert -0.2 Cold Desert Temperate Coniferous Forest Temperate Deciduous Forest 0.0 Boreal Forest Prairie -0.5 Arctic Tundra Hot Desert Cold Desert -1.0 -0.4 -1.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -2.0 PCo1 (25%) -4 -3 -2 -1 0 1 2 3 4 PCo1 (71%) desert 40 other biomes desert Fierer et al. In Review. rRNA genes other16Sbiomes Fierer et al. In Review. 20 40 Tropical Forest 16S rRNA genes 20 Tropical Forest PCo2 (15%) Temperate Coniferous Forest Temperate Deciduous Forest 0 PCo2 (15%) Temperate Coniferous Forest Temperate Deciduous Forest 0 Boreal Forest Prairie Arctic Tundra -20 Hot Desert Boreal Forest Cold Desert Prairie Arctic Tundra -20 -40 Hot Desert Cold Desert -40 -60 -60 -40 -20 0 Community Composition (16S) 0.4 Functional Attributes (shotgun) PCo1 (26%) -60 -40 -20 0 20 40 1.5 metagenomes 1.0 Tropical Forest 1.0 Tropical Forest 0 -20 -0.2 Tropical Forest Temperate Coniferous Forest 0.5 Tropical Forest Temperate Coniferous Forest Temperate Deciduous Forest Temperate Coniferous Forest Temperate Deciduous Forest PCo2 (11%) PCo2 (15%) PCo2 (14%) 0.0 0.5 Boreal 0.0Forest Boreal Forest Prairie Prairie Arctic Tundra Arctic Tundra Hot Desert Hot Desert Cold Desert Cold Desert -0.5 Temperate Deciduous Forest Boreal Forest Prairie Arctic Tundra Hot Desert Temperate Coniferous Forest Temperate Deciduous Forest 0.0 Boreal Forest Prairie -0.5 Arctic Tundra Hot Desert Cold Desert -1.0 Cold Desert -1.0 -40 -1.5 -0.4 -0.4 PCo2 (11%) 20 60 metagenomes 16S rRNA genes 0.2 40 60 1.5 40 20 PCo1 (26%) -60 -1.5 -0.3 -0.2 -0.1 -2.0 -60 0.1 -60 0.2 0.0 -400.3 -20 0.4 0 PCo1 (25%) 20 -2.0 PCo1 (26%) -4 40 -3 -4 60 -2 -1 0 1 2 3 -3 -2 -1 4 0 1 2 3 4 PCo1 (71%) PCo1 (71%) 1.5 metagenomes 1.0 Tropical Forest 0.5 PCo2 (11%) Community composition is strongly correlated with functional attributes (Mantel r = 0.76) Temperate Coniferous Forest Temperate Deciduous Forest 0.0 Boreal Forest Prairie -0.5 Arctic Tundra Hot Desert Cold Desert -1.0 -1.5 Deserts dormancy/sporulation osmoregulation amino acid metabolism Other Biomes catabolism of aromatic C N, P, S cycling antibiotic resistance -2.0 -4 -3 -2 -1 0 1 2 3 4 PCo1 (71%) 2 11/16/2012 Antibiotic Resistance Genes Other Biomes Relative Abundance of Antibiotic Resistance Genes (%) 6 Strong desert/non-desert split in the functional attributes of soil microbial communities 5 Soil microbial biogeography is often predictable 4 3 Cold Deserts Hot Deserts - diversity - community composition - functional traits 2 1 0 1 6 3 4 1 0 9 7 6 2 3 1 1 1 1 1 02 02 02 01 01 02 MD SV SF PE KP DF CL BZ AR TL E B E B E B EB E B E B Fierer et al. In Review. Effects of nitrogen fertilization on soil carbon dynamics +N Effect Size Meta-analysis of previously published field studies plant biomass lower higher microbial biomass higher lower microbial respiration rates Soil microbial biomass and respiration typically decrease when soils are amended with N Ramirez et al. 2012. Global Change Biol., Treseder. 2008. Ecology Letters 3 A 0 100 200 300 400 800 500 Control Respiration (mg C g C-1) Paired samples: control and treatment (1mg N/g soil) 0.0 Effect Size 30% decrease in microbial biomass Lab Incubation (365 days) 0 20 40 60 80 100 Control Biomass (mg C g C-1 h-1) 0.1 10% decrease in soil respiration B -0.4 -0.3 -0.2 -0.1 Cross Biome Study: Treatment Biomass (mg C g C-1 h-1) 0 20 40 60 80 Treatment Respiration (mg C g C-1) 0 100 300 500 800 11/16/2012 Respiration Ramirez et al. 2012. Global Change Biol. Biomass Ramirez et al. 2012. Global Change Biol. Why does microbial biomass and respiration typically decrease when soils are amended with N? Fertilizer toxicity? (unlikely - see Ramirez et al. 2010. Soil Biol. Biochem.) Experimental N gradients Cedar Creek LTER, MN Kellogg Biological Station LTER, MI N additions in place for 28 years (up to 272 kg/ha/yr) N additions in place for 10 years (up to 290 kg/ha/yr) Inhibition of extracellular enzymes? Change in microbial community composition? 16S rRNA analyses (Unifrac distances) N increases ‘copiotrophic’ taxa Bacteroidetes γ-Proteobacteria Shotgun metagenomic analyses 18 samples: 2 sites x 3 N levels x 3 reps. Cedar Creek Kellogg high N 1.3 million reads (454 Titanium) 15,000 to 28,000 annotated reads per sample N decreases ‘oligotrophic’ taxa Acidobacteria low N Ramirez et al. 2011. Ecology Fierer et al. 2012. ISME J 4 11/16/2012 The composition of the communities and their functional attributes are well-correlated CC r2 = 0.98 KBS r2 = 0.60 CC no N CC high N KBS no N KBS med N KBS high N CC no N CC med N MG-RAST PCo1 CC med N CC high N KBS no N KBS med N KBS high N Unifrac PCo1 Fierer et al. 2012. ISME J A -1 0 kg N ha y Subsystem Hierarchy 1 Subsystem Name Subsystem # Fierer et al. 2012. ISME J -1 34 kg N ha y -1 -1 272 kg N ha y -1 45 54 8 23 38 17 40 52 Rho Mean % -0.4 -0.4 -0.8 -0.5 -1.3 1.0 1.6 1.2 0.91 1.2 -0.1 -0.4 -1.2 -0.4 -0.8 -0.8 1.3 0.8 1.6 0.91 0.3 -0.9 -0.5 -1.1 -0.7 -0.4 -0.2 1.2 1.6 1.1 0.97 0.1 139 -0.9 -0.7 0.1 -0.6 -0.9 -0.7 0.7 1.4 1.6 0.90 4.3 143 -0.9 -1.2 -0.3 -0.1 0.4 -1.0 1.9 0.4 0.8 0.81 0.5 -0.3 -0.8 -1.1 -0.4 0.1 -1.0 0.6 1.4 1.6 0.90 0.4 155 F0F1-type ATP synthase 154 Cofactors, Vitamins Lipoic acid metabolism 96 Protein Metabolism tRNA aminoacylation Protein Metabolism General Secretion Pathway DNA Metabolism DNA structural proteins 106 Respiration -1 22 -0.3 Ubiquinone-cytochrome reductase complexes Respiration DNA Metabolism DNA-replication 104 -0.9 -1.4 -0.7 -0.8 0.0 0.6 1.5 1.2 0.3 0.80 1.4 RNA Metabolism ATP-dependent RNA helicases 145 -0.7 -0.1 -0.1 -0.3 -1.0 -0.4 1.9 1.5 -0.8 0.83 1.5 Nucleosides/Nucleotides Purine conversions 128 -1.4 -0.9 -0.8 0.3 0.3 -0.6 0.6 0.7 1.8 0.62 1.1 Amino Acids and Derivatives Urea decomposition 2 2.0 0.5 -0.1 -0.8 0.5 0.6 -0.8 -0.9 -1.0 -0.70 1.2 Motility and Chemotaxis Bacterial Chemotaxis 125 1.1 -0.4 0.6 1.4 0.5 -0.6 -1.7 -0.1 -0.9 -0.67 1.3 Motility and Chemotaxis Bacterial motility:Gliding 124 -0.1 0.3 1.1 1.7 -0.7 0.6 -0.7 -0.8 -1.3 -0.70 0.6 Aromatic Cmpd. Metabolism Phenylpropanoid compound degradation 120 0.2 2.0 -0.4 -0.2 0.7 0.7 -1.1 -1.1 -0.6 -0.73 0.6 Cofactors, Vitamins Fe-S cluster assembly 93 1.6 1.1 0.0 0.7 0.0 -0.1 -0.8 -1.1 -1.3 -0.84 Regulation and Cell Signaling cAMP signaling 153 1.1 1.1 1.1 -0.1 0.2 0.1 -1.4 -1.4 -0.6 -0.91 Clustering-based Subsystems Tricarboxylate transporter 80 0.4 1.0 0.6 0.5 0.4 0.8 -1.9 -1.1 -0.8 -0.94 0.5 Rho Mean % B -1 0 kg N ha y Subsystem Hierarchy 1 Subsystem Name Respiration Ubiquinone-cytochrome reductase complexes Cofactors, Vitamins Folate Biosynthesis -1 -1 101 kg N ha y -1 -1 291 kg N ha y 201 301 401 204 304 404 209 309 409 155 -1.3 -0.1 -0.5 -0.2 1.3 2.0 94 -0.8 0.0 -1.5 0.9 1.2 Subsystem# -0.4 -0.6 -0.2 0.1 0.76 -1.1 -0.1 1.3 0.86 Lipoprotein Biosynthesis 138 -1.7 -0.3 0.2 -0.2 -1.0 -0.1 1.2 1.6 0.3 0.74 RNA Metabolism ATP-dependent RNA helicases 145 -1.0 -0.6 0.2 -1.2 -0.5 0.6 -0.1 2.0 0.7 0.62 Cell Wall and Capsule Cellulosome 31 -0.7 -1.1 -0.4 -0.2 -0.3 -0.5 -0.1 1.7 1.7 0.82 Potassium metabolism Potassium-efflux system 135 -0.9 -0.1 -1.0 -0.8 0.4 -0.5 0.9 0.0 2.1 0.74 Protein Metabolism 0.1 2.5 -1 Clustering-based subsystems Pyrimidine biosynthesis 62 -1.7 0.3 -1.5 -0.2 0.2 0.5 0.8 0.2 1.4 0.74 Membrane Transport Fructose and Mannose Inducible PTS 115 -0.9 -0.7 -0.2 0.2 0.1 -1.5 0.0 1.2 1.7 0.71 Carbohydrates Chitin and N-acetylglucosamine utilization 11 -0.2 -0.2 -0.4 -1.0 -1.1 -0.3 -0.1 1.7 1.7 Amino Acids and Derivatives Urea decomposition 2 1.9 -0.7 0.7 0.2 -0.3 0.7 -1.3 0.1 -1.1 Secondary Metabolism Phytoalexin biosynthesis 163 1.5 1.0 1.0 -0.7 -0.4 -0.6 -1.5 0.2 -0.5 -0.69 Nucleosides and Nucleotides Pyrimidine utilization 129 1.0 0.4 0.7 -0.2 0.3 0.7 -2.2 0.3 -0.9 -0.73 Clustering-based subsystems Tricarboxylate transporter 80 -0.4 1.1 0.3 0.9 0.5 1.1 -1.2 -1.4 -0.9 -0.74 Cell Wall and Capsule Lipid A-Ara4N pathway (Gram negative) 29 0.9 1.6 0.2 -0.1 0.7 -0.4 -0.6 -1.7 -0.7 Cell Wall and Capsule Rhamnose containing glycans 27 1.4 1.0 1.2 -0.6 0.4 -0.6 -0.4 -1.0 -1.3 -0.85 Virulence Resistance to fluoroquinolones 189 1.9 0.4 0.8 0.2 -0.4 0.2 -0.8 -0.9 -1.4 -0.88 0.67 -0.61 -0.83 1.2 1.5 0.1 1.6 0.1 0.9 0.1 0.1 0.2 1.3 0.1 0.4 0.7 1.2 1.2 3.2 Shotgun metagenomic analyses indicate that N increases “copiotrophic” gene pathways 20 Caveats Metagenomics provides information on potential functions No added N +N Parting Thoughts: Microbial community composition does provide information on ecological attributes >75% of the soil metagenome is typically left unannotated Gene sequence homology may not equal functional homology We need more genomic and ecological information for the majority of soil microbial taxa that remain uncharacterized Gene relative abundance ≠ absolute abundance (or activity) Meta-‘omics’ are no panacea Fungi likely underrepresented in metagenomes 5 11/16/2012 Project Collaborators Univ. of Colorado: Scott Bates Donna Berg-Lyons Rob Knight Chris Lauber Jon Leff Jesse Zaneveld Colorado State Univ.: Kelly Ramirez Diana Wall Northern Arizona Univ.: Greg Caporaso Yale Univ.: Mark Bradford Univ. of California, San Francisco: Josh Ladau Katie Pollard Brigham Young Univ.: Byron Adams Univ. of Western Sydney: Uffe Nielsen Argonne National Lab/Univ. of Chicago: Jack Gilbert Sarah Owens U.S. Dept. of Agriculture National Science Foundation 6
© Copyright 2026 Paperzz